Rendering 101

For videogames

Why rendering?

Artists can create images

— A sequence of images creates an
animation

But in a game the player is in

control

— We go right, we have to show an
image depicting what’s on the right

We need a method to create

images “on the fly”

— Artists define objects, colours,
where lights are etc...

— A scheme...
— Rendering converts this into images

Game Rendering Recipe

.- \// >/ \

A lot of
different
people and
mindsets are
involved!

Math/Physic>\
background
\

Ok, it’s an equation.

A single equation.

It exists a job devoted
to solving it!

Jim Kajiya... The author of the rendering equation
Hawkins wrote in the preface of one of his books that his editor once told him that for
each equation in his book, he would lose half of the audience. So he included only one,

and that’s what I'll do too...

The equation is in an ugly form, | took the image from Wikipedia

With an image:
—

et —
over the scattering
hemisphere
Incoming light

fr(x, o', w, A t) Li(x,0, A\, t) (=« - n)dw

To generate an image, we want to know from every point in the scene the light that reaches
our virtual eye.

The basic device is something that tells us how much light from a point goes to a given
direction, this is what the lighting equation describes.

We want to compute the light outgoing (“Lo”) from the big black arrow (radiance), emitting
from a point towards our sensor (camera/eye):

1) We need to know all the light that arrieves on that point. Only lights emit light (that is
accounted by the term Le, that is non-zero if the point x is on a light), all the other points in
the scene just reflect some energy that arrieves from somewhere else...

In math, this is an integral (sum) over an hemisphere (a point can’t receive light from
directions behind its surface) of the “Li” (incoming light)
This quantity is called “irradiance”
2) Each ray of light that reaches our point is scattered by the surface material in some
direction, with some intensity
A function defines the properties of the material, in the equation is the “fr(...)” term.
It’s called BRDF — bi-directional (as it takes two angles, the incoming one from Li and
the outgoing one we’re computing Lo on) reflectance distribution function

The problem is that we don’t know the light incoming (Li) from all the directions on that point!
To compute that, we need to solve another light-from-a-point-towards-a-direction kind of
problem that is, our equation is recursive.

In general, even to compute effects as simple and fundamental as shadows, we have to
consider the other objects in the scene to find the color of each other (thus we call these
effects “global” illumination)

It IS really that simple...

“SmallPT”
99 lines of code

hours later...

The very core of rendering, is all in that equation... well, plus some signal/sampling
theory as you're going to make an image out of pixels, some knowledge about colors
and human perception and a sprinkle of geometry in order to have some math that is
able to represent your scene... Et voila! (at least for static images, in theory...)

SmallPT: path tracing in 99 lines of C++ code: http://www.kevinbeason.com/smallpt/
The image took 10 hours on a Intel Core 2 Quad, 2.4ghz, using 4 threads

The CUDA version is very interesting: http://code.google.com/p/tokaspt/

...oris it?

—

Aaaaaarrrrghhh... We need to know the light in order to compute the light... Infinite!

Under some conditions though, it’s like a spiral, it converges to a point, which we can
compute.

One light bounce at a time

* Luckily, smart guys solved this | wamomcmowmos
problem

— The equation is of a given form:
“Fredholm integral of the Il kind”

— Can be solved to a series of steps...

L +KoL, L +-
- ...st|II we would need to take an |nf|n|te
amount of them...

— ...in practice, we choose at random
(Monte-Carlo Global Illumination) which
bounces to consider.

The series solution is called “Liouville-Neumann” series.

The best reference for this theory (even if it’s quite heavy in terms of math) is Eric
Veach’s dissertation thesis.

...if you can afford to solve it!

* Asingle equation?
— Yes, but it’s in general not computable

— In practice, it’s very hard
* Infinite-dimensional & discontinous
* Alot of research on how to solve it
* Trivial methods take hours or days to compute an image!

— ...andit’s already approximated!

— We’re not slacking off, it’s even harder than F=ma!

Clouds (vohunetric saniering)

‘Graws (6D BTF)
hugh frequencies

in space sod angle

Not computable: search for the “raytrix” at Stanford

Approximated: we consider only straight rays, the equation here does not consider that
the light penetrates into some materials and exists at a different point (i.e. Wax, human
skin), does not consider other minor effects like fluorescence and phosphorescence,
diffraction... All these are conceptually easy but trivial solutions are intractably slow.

10

In games...

* We consider ourselves lucky if we
manage to solve a single bounce
decently

— That’s to say, direct lighting (from light
sources bounced on a surface to the eye)
— It’s already a “global problems”
* If we consider shadows
— We pre-compute lots of stuff

* Scenes would be too dark with only a
single bounce

— We add a bit of light everywhere to
approximate the remaining bounces

— That’s what we call “ambient” light

— Usually constant everywhere, or
depending on the surface orientation.

Images from:

http://www.valvesoftware.com/publications/2006/SIGGRAPH06 Course ShadinginValv

esSourceEngine Slides.pdf

11

http://www.valvesoftware.com/publications/2006/SIGGRAPH06_Course_ShadingInValvesSourceEngine_Slides.pdf
http://www.valvesoftware.com/publications/2006/SIGGRAPH06_Course_ShadingInValvesSourceEngine_Slides.pdf

Another problem

* We went a little bit too fast...
— Light “from a point”
— Ok but which point?
— Which points are visible from our virtual eye?
— Which points are visible from another point in the scene?

* Rendering =
— Visibility (which surfaces do we see?)
— Shading (what colour a given surface has?)

12

Visiblity: Raytracing

Let’s assume that our
scene is made of spheres

Let’s draw lines from our
virtual eye outwards
toward the scene

Can we find where these
lines intersect the
spheres?

Can we find which one is
the closest?

Image
Camera Light Source
¥ 8
—| View Ray
AN Scene Object

13

It turns out we can...

* Some basic math...

* Rinse and repeat:

Ray-Sphere Intersection | &J

Ray. P=P,+tv

Sphere:|P - O -r2=0 Algebraic Method

Substituting for P, we get:
[P+t -CF-r2=0

Solve quadratic equation! P
at+bt+c=0 P —
where: v
a=1
= . - Pﬂ
b=2V+(P,-0)
c=|Py-ClE-r2=0
P=pysty

v

* We can do the same for many other primitives
— http://www.realtimerendering.com/intersections.html

14

Back to SmallPT source code

Ray-Sphere intersection |
struct Ray { Vec o, d; Ray(Vec o_, vec d) : o(o_), d(d_) () }

enum Refl t { DIFF, SPEC, REFR };
struct Sphere {
double rad;
Vec p, e, c:
Refl T refl:
Sphere (double rad_, vec p_, Vec e_, Vec c_, Refl t ref) B
rad(rad_), p(p_), e(e_), c(c_), refl(refl) {}
double intersect (const !\ny i const (
Vec op = p-r.o; “ (o5
double t, eps=ie-4, b=op. dot(z.q), d::-b'b-ap dot.(op)d—xad‘rnd.
if (det<0) return 0; else det=sqrt(det):
return (t=b-det)>eps ? T : ((t=b+det)>eps 2 T : 0);

Vec radiance (const Ray &r,
double t;

it depth, unsigned sh

if (!intersect(r, t, id)) return Vec():
const Sphere §obj = spheres[id]:

Vec x=r.o+r.d*t, n=(x-obj.p).norm(), nl=n. dot(r 4)<07n:ine-1, f=ob3.c:

double p = £.x>f.y &6 £.x>£.2 ? £.x : £.y>f.z ? f.y : £.2;

if (++depth>S) if (erandds (Xi)<p)

——l Ray-Scene Intersection

Russian-roulette, stop the recursion at a

if (obj.refl == DIFF)({
double ri=2+M_PI (X1), r2=erandd8(Xi), r2s=sqrt(r2
Vec w=nl, u=((fabs(w.x)>.12Vec(0,1):Vec(1))¥w).norm(), v=whu;
Vec d = (u*cos(rl)*r2s + v*sin(rl)*r2s + wesqrt(1-r2)).norm();
return obj.e + f.mult(radiance (Ray (x,d),depch, Xi))

‘1 D) : else retnrn obd e o

random depth

Materials: Diffuse (Lambertian) shoots a ray

else if (obj.refl == SPEC)
return obj.e + f.mult(radiance (Ray (x,z.d-n*2+n. dot.(
Ray reflRay(x, r.d-n*2+n.dot(r.d)):
bool into = n.dot(nl)>0:
double nc=1, nt=1.5, nat=into?nc/ntint/nc,
if ((cos2t=l-nntennt+(1-ddn*ddn))<0)
return ob3.e + f.mult(radiance(reflRay,depth,Xi));
Vec tdir = (r.d*mnt - n*((into?
double a=nt-nc, b=nt+nc, RO=a*a/(b*b), c =
double Re=R0+(1-R0)*c#c*cec*c,Tr=1-Re,P=.25+.5+Re, RP=Re/P, TP=Tx/ (
return obj.e + f.mult(depth>2 ? (erandds (Xi)<P ? R
radiance (ref1Ray, depth, Xi) “RP:radiance (Ray (x, tdir) ,depth, Xi)
radiance (ref1Ray, depth, Xi) *Re+radiance (Ray (x, tdir) ,depth,Xi)

ddn=x.d.dot (nl), cos2T

.d)), depm xu

1) * (ddn*nnt+sqrt (cos2t)))) .norm() ;
- (into?-ddn:tdir.dot(a));

in a random direction around the hemisphere

.| Materials: Pure mirror shoots a ray directly
towards the reflection vector

®): /‘{ Materials: Transparent refraction

15

Raytracing

Very general

Powerful

Great for solving the rendering equation
Slow

In practice, not used for videogames...

...but very popular in offline renderer, when we have
a lot of time to generate each image

Images from http://www.awn.com/articles/article/2012-end-world-we-know-

it

age/4,1

16

http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/4,1

Another solution: Rasterization

* Given a primitive, can we know which points of the
image it covers?

* “Walking” on the primitive and marking all the
points we visited on the image...
* Let’s try with a triangle... On screen
— Walk on the edges (lines — slopes!)
— Defines “scanlines”
— Walk on each line and mark the points we visit

I

Writing a software rasterizer is cool

Scanline:
http://www.flipcode.com/documents/fatmap.txt

http://chrishecker.com/Miscellaneous Technical Articles#Perspective Texture Mappin

g

Half-plane:
http://www.devmaster.net/forums/showthread.php?t=1884

17

http://www.flipcode.com/documents/fatmap.txt
http://chrishecker.com/Miscellaneous_Technical_Articles
http://chrishecker.com/Miscellaneous_Technical_Articles
http://chrishecker.com/Miscellaneous_Technical_Articles
http://www.devmaster.net/forums/showthread.php?t=1884
http://www.devmaster.net/forums/showthread.php?t=1884
http://www.devmaster.net/forums/showthread.php?t=1884
http://www.devmaster.net/forums/showthread.php?t=1884

Rasterization and Z-Buffer

* Our scenes are made of triangles!
* We need to know which points they cover

* In case many triangles cover the same point, we
choose the closest

— We interpolate depth on the triangle
— We store per each point the closest we’ve seen
— Z-Buffer (a.k.a. Depth-buffer)

Images from: http://www.harkyman.com/2005/05/22/sears-kit-barn-tutorial/

18

http://www.harkyman.com/2005/05/22/sears-kit-barn-tutorial/
http://www.harkyman.com/2005/05/22/sears-kit-barn-tutorial/
http://www.harkyman.com/2005/05/22/sears-kit-barn-tutorial/
http://www.harkyman.com/2005/05/22/sears-kit-barn-tutorial/
http://www.harkyman.com/2005/05/22/sears-kit-barn-tutorial/
http://www.harkyman.com/2005/05/22/sears-kit-barn-tutorial/
http://www.harkyman.com/2005/05/22/sears-kit-barn-tutorial/

Rasterization VS Raytracing

L]

Considering “first-hit” — only visiblity from eye to
the scene

Raytracing (first-hit)

— for_each point px on screen { for_each primitive prin
scene { intersect ray(px) with pr }}

Rasterization

— for_each primitive pr in scene { for_each point px
covered by pr { mark px on pr }}

Same operations, different order

http://c0de517e.blogspot.com/2011/09/raytracing-myths.html

19

http://c0de517e.blogspot.com/2011/09/raytracing-myths.html
http://c0de517e.blogspot.com/2011/09/raytracing-myths.html
http://c0de517e.blogspot.com/2011/09/raytracing-myths.html

Math and Physics

* Much more than the rendering
equation
— We didn’t even talk about colours!
— Nor we really talked about light...
— Materials
— Signal processing
— Vision (perception)
— Geometry
— Spaces, Transforms, Algebras...

* Some good books:

LOOK INSIDE! LOOK INSIDE! LOOK INSIDE! LOOK INSIDE!

r —
Real-Time
Rendering

of
Illumination
ok

XE =0

Y
.-/:%:

Amazon links:

http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-
Moller/dp/1568814240/ref=sr 1 1?ie=UTF8&qid=1317419811&sr=8-1

http://www.amazon.com/Real-Time-Collision-Detection-Interactive-
Technology/dp/1558607323/ref=sr 1 13?ie=UTF8&qid=1317419811&sr=8-13

http://www.amazon.com/Computer-Graphics-3rd-Alan-
Watt/dp/0201398559/ref=pd sim b56

http://www.amazon.com/Advanced-Global-lllumination-Second-
Philip/dp/1568813074/ref=pd sim b2

http://www.amazon.com/Realistic-Image-Synthesis-Photon-
Mapping/dp/1568814623/ref=sr 1 1?s=books&ie=UTF8&qid=1317420066&sr=1-1

20

http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_1?ie=UTF8&qid=1317419811&sr=8-1
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Real-Time-Collision-Detection-Interactive-Technology/dp/1558607323/ref=sr_1_13?ie=UTF8&qid=1317419811&sr=8-13
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=pd_sim_b56
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Advanced-Global-Illumination-Second-Philip/dp/1568813074/ref=pd_sim_b2
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568814623/ref=sr_1_1?s=books&ie=UTF8&qid=1317420066&sr=1-1

In practice? Rendering in 1/60 sec

* Generating images from data

— Geometries + some images on top + some code + lots of
parameters

— Most of the times, we really forget about the rendering
equation
A lot of approximations & hacks...
— ...to do it. We don’t fully understand light anyway!

— ...to do it fast! Even when we understand it!
* We still use “mostly” local shading
— We care about human perception! If it looks good...
* But we don’t know too much about it (yet)
We use a Graphics Processing Unit

Math provides a good base to undestand our errors
— Reality/our end result are too complicated to “debug”

*“mostly” local... Commonly the shading (color) of a surface depends only on the
surface and the lights, plus the shadows that are the only widespread global effect

* We still don’t do our math right in a LOT of cases! Makes everything complicated,
when your shading in practice depends on hundreds of material paramters (and hacks),
different rendering passes/effects, a lot of source data (images, geometry...)

21

What is a GPU?

* A dedicated processor for graphics
— Runs in parallel with everything else
— Can or cannot have its own memory
* Ps3, PCdo; 360 does not

— Executes instructions
* Generated by the CPU, per frame
* Stored in a “command buffer”
* The buffer can contain multiple frames

* Does fundamentally two things:

= VISIbllty = :;uammm
* Draws triangles, z-buffer —
* “First-hit” only il |
* FAST!

— Shading

* On each visible point, it executes some code (that we define) to compute a
colour for that point

— Does not solve the rendering equation
* We can use these two things to approximate a solution

In detail:

http://c0de517e.blogspot.com/2008/04/gpu-part-1.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2009/05/how-gpu-works-appendix.html
http://c0de517e.blogspot.com/2008/07/gpu-versus-cpu.html

22

http://c0de517e.blogspot.com/2008/04/gpu-part-1.html
http://c0de517e.blogspot.com/2008/04/gpu-part-1.html
http://c0de517e.blogspot.com/2008/04/gpu-part-1.html
http://c0de517e.blogspot.com/2008/04/gpu-part-1.html
http://c0de517e.blogspot.com/2008/04/gpu-part-1.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-2.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2008/04/how-gpu-works-part-3.html
http://c0de517e.blogspot.com/2009/05/how-gpu-works-appendix.html
http://c0de517e.blogspot.com/2009/05/how-gpu-works-appendix.html
http://c0de517e.blogspot.com/2009/05/how-gpu-works-appendix.html
http://c0de517e.blogspot.com/2009/05/how-gpu-works-appendix.html
http://c0de517e.blogspot.com/2009/05/how-gpu-works-appendix.html
http://c0de517e.blogspot.com/2009/05/how-gpu-works-appendix.html
http://c0de517e.blogspot.com/2009/05/how-gpu-works-appendix.html
http://c0de517e.blogspot.com/2008/07/gpu-versus-cpu.html
http://c0de517e.blogspot.com/2008/07/gpu-versus-cpu.html
http://c0de517e.blogspot.com/2008/07/gpu-versus-cpu.html
http://c0de517e.blogspot.com/2008/07/gpu-versus-cpu.html
http://c0de517e.blogspot.com/2008/07/gpu-versus-cpu.html

Source Data

* Geometry
— Triangles
* Materials
— Images
— Colours
— Other parameters
* Game data
— Position of objects
— Position of the camera

— Animations

* In which pose
characters are...

Most images from: http://minifloppy.it/works/1/udk-jungle-environment

23

http://minifloppy.it/works/1/udk-jungle-environment
http://minifloppy.it/works/1/udk-jungle-environment
http://minifloppy.it/works/1/udk-jungle-environment
http://minifloppy.it/works/1/udk-jungle-environment
http://minifloppy.it/works/1/udk-jungle-environment

Algorithms

* Drawing triangles is easy
— How we draw them is the key!
* How many? Where? When? What color? Those are our tools...
— How do we approximate the rendering equation by
drawing triangles?
* Many techniques
* We won't see any of them here

Simplified GPU pipeline

Some configration
possible

Fully Programmable

Vertex
Geometry Transform Triangle
Vertex Input (position, Rasterization
animations)

Visible Point
Colour
Computation

25

GPU commands

We can tell the GPU to:
Set state

— Turns internal switches on and off
— Binds resources
* Images (textures)
* Vertex data (geometry streams)
* Code for the programmable stages (shaders)
Draw
— Starts the engines!
— Process a bunch of data with the current settings
— Draws some triangles in some memory area...

Present
— Finish the current frame!
— Display the contents of a given memory area on screen

Plus something else here and there...
— I.E. GPU <-> CPU syncronization primitives

26

The most basic 3d Engine...

Repeat for every
visible object

Set GPU state
for geometry

What objects In which Set GPU state

Get data cb‘v:cr)c:raere? af:z;is.;l:,e order do we Start for materials
. ' have todraw i emittingGPU H (shader code, Kick a draw

Transform, current
4 stuff? transforms,
“Skinning” view? commands parameters, (

End GPU,
from present

gameplay

image on

screen
e " orting” source vertex
“Culling” Sorting textures)

streams)

1
GPU/CPU in parallel

Culling is needed because our scenes are often huge, we can’t send _everything_to the
GPU and hope it will generate something fast enough...

Many things can be overlapped between the GPU and CPU, here we highlight only that
when we send commands to from the CPU to the GPU, the two chips are operatingin
parallel, and if they need to talk to each other it needs syncronization. In practice the
overlap will be there during the whole execution, usually when the rendering is taking
the data from the game the GPU is still busy rendering the previous frame for example.

All real renderers also generate an image in many different passes, it might need to
render the scene from the point of view of the lights (to cast shadows) and to generate
many intermediate views and images, combine them and post-process them and use
some as inputs for the rendering of others.

27

(simplified) Real world example

* Compute visible
.

objects

* Generate a first image
with surface
properties

* Generate images
from the point of
view of the lights

* Generate an image
containing scene
lighting

* Mix scene lighting
with textures

* Add special effects

* Post-process

+ Total: ~3000 unique ‘

draw calls, milions of
triangles...

These images were generated by instrumenting a retail PC copy of Space Marines
(Relic/THQ): http://www.spacemarine.com/

http://www.spacemarine.com/

What do rendering engineers do?

As all engineers, we solve problems:
— How to paint our triangles?

* What color? Which lights? How does the light interact with the materials?

— What commands we want to send to the GPU?

* What objects are currently visible in the scene? What is the best way of drawing what we need to see?

— How to organize our resources?

* What is the source data? How to load it? Streaming? Loading logic... How to store it? Data pipeline... Memory is
always a problem

— How to process our vertices?

* Do we need to move them? Animation... Do we need to draw multiple copies? Instancing...

Write powerpoint presentations...

29

