
IdentifyingOpenProblemsin DistributedSystems

Andrew Warfield,YvonneCoady, andNormHutchinson
Universityof British Columbia�

andy, ycoady, norm � @cs.ubc.ca

Thetechnologyaboveandwithin theInternetcon-
tinuesto advance, andhasreacheda point where the
potentialbenefitsof verylargescale, finelydistributed
applicationsaremore apparentthanever. Opportuni-
ties are emerging to developlarge systemsthat cater
to highlydynamicandmobilesetsof participants,who
desire to interact with each other and stores of on-
line contentin a robust manner. Theseopportunities
will inevitably dictatea substantialbodyof research
in theyears to follow. Althoughapplicationsintended
to functionat thisscalehaverecentlybegunto appear,
thereremaina broadsetof openproblemsthatmustbe
facedbefore this emerging classof distributedsystem
canbecomea reality.

1 Introduction

Distributedsystemsresearchhashistorically avoided
many hardproblemsthroughthe carefully calculated
useof operatingconstraints.Scalableresourceclus-
ters are assumedto be tucked away in protectedfa-
cilities andconnectedby reliable infrastructure[15].
Largesystemsareassumedto havecooperatingnuclei
of administrative organizationsthatdo not fail [8]. In
peerenvironments,participantsareassumedto behave
fairly insteadof leachingresources[3]. As the spec-
ificationsof thesesystemsgrow to requireoperation
at a massive scalewith highly distributedadministra-
tion, theseassumptionswill be strongly challenged
as a meansof providing useful systems. In short,
distributedsystemsresearchis quickly approachinga
pointatwhichmany hardproblemscannotbeavoided
any longer.

Prior to embarkingon the constructionof a large-
scale distributed operating system, we felt that it
would be usefulto survey the landscapeof problems
that will be facedin the constructionof this classof
system.This paperis a summaryof urgentproblems
thatmustbeaddressedin orderfor successfulsystems
of this caliberto berealized.

Our approachto identifying open problems is
twofold. First, we have designeda taxonomyto de-
scribe the domainof existing and future distributed

systems. This model is a two-dimensionalspace
whoseaxes define (1) the concurrency and conflict
of resourceaccess,and(2) the degreeof distribution
and mobility of resourceswithin the system. From
this model,we draw four phylaof application:point-
to-point, multiplexed, fragmented,and peer-to-peer.
This lastphylumdefinesour targetdomainandweap-
ply lessonslearnedfrom the otherthreegroupsto it.
Throughour taxonomy, we describea setof architec-
tural systemsproblemsthatmustbeaddressed.

Thesecondaspectof our examinationhasbeento
stepbackandexaminetheimplicationsinvolvedwith
theadoptionof large-scaledistributedoperatingenvi-
ronments.In this section,we arelessconcernedwith
classicalsystemsissues(performance,robustness,and
scale)andmoreconcernedwith pragmaticfactorsin-
volvedin building a goodsystem.We presenta broad
setof pertinentproblemsthatwill needto beaddressed
for thesesystemsto be successfuloutsideof the re-
searchlaboratory.

2 Taxonomy of Distribution

This section presentsa taxonomy, describing four
phyla of distributed systemsin a continuousspace
alongtwo axes.Theaxes,accessconcurrency andre-
sourcedistribution, stemfrom an examinationof the
evolution of distributedapplications.Accessconcur-
rency considersthenumberof simultaneousaccesses
to a resourceandthedegreeof conflict betweenthese
accesses.Accessconcurrency problemsemergedas
researchersbegan to move towardstime sharingon
mainframes. Resourcedistribution representshow
broadly a systemis spreadacrossa network infras-
tructure.

Individually, each of these axes representsa
steadilyincreasinggradientof complexity within sys-
tem architecture. It is in the caseswhereboth axes
havehighdegreethatsystemcomplexity explodes.In-
deed,distributedapplicationsseemto all residevery
closeto theaxesin ourmodels.Thisobservationsug-
geststhattheremustbesomelimiting factorsthatex-
ist, inhibiting the developmentof complex systems.



We now considerthe two axesandfour phylaof sys-
temsindividually.

2.1 Access Concurrency

Accessconcurrency originatedwith the desireto al-
low usersto sharetheresourcesof originalmainframe
computers.Concurrency mechanismsallow clientsto
sharea resourcewhile preservingthestateof that re-
sourceduringsimultaneousaccesses.It is worthnoth-
ing thatwithout a requirementto avoid conflict, con-
currency mechanismsneedonly act as statelessre-
questmultiplexers.Althoughtherearecomplexity is-
suesin simplemultiplexing at the Internetscale,it is
conflict avoidancethatmakesaccessconcurrency es-
peciallyhard.In orderto avoid conflictsbetweencon-
currentaccess,extramechanismsmustbeputin place.
Thesemechanismsadd overheadand complexity to
thesystem.

Mechanismsto supportaccessconcurrency involve
tradeoffs betweenefficiency andeffectiveness.Very
efficient concurrency control techniquesaim to allow
the highestpossibleamountof simultaneousaccess,
but maydosoatthecostof poorlypreservingresource
stateor unfairly schedulingthis access.Techniques
that are optimizedfor effectivenessprotect resource
state,but maydo soby severelylimiting concurrency
of access.As anexample,considerthelockingof files
to preserve consistency in concurrentsystems. Pes-
simistic locking is mosteffective at preservingstate,
but resultsin a completeloss of concurrency when-
ever thefile is lockedfor writing. Optimistic locking
allows a higherdegreeof concurrency, but may per-
form worsein ahighstateof conflictasmany transac-
tionsmustbeaborted.In theextremecaseof efficient
concurrency, conflictsmaysimply beflaggedandleft
for a separatemechanismto resolve later. This is how
inconsistenciesareaddressedaftera disconnectionin
distributed file systemssuchas Coda [11]. Similar
analogiesfor accessconcurrency exist with respectto
other resourcessuchas memoryprotectionandpro-
cessscheduling.

In this emerging classof largedistributedsystems,
the issueis that a high degreeof concurrency within
a systemdemandsefficiency, while individual users
will expecteffective consistency preservation. Mea-
sures,suchasconflict resolution,have not beenwell
explored. It is a non-trivial problemto automatically
resolve conflicts on information that doesnot have
a high degreeof structure,suchas files and ad hoc
databases(i.e. the Windows registry). Additionally,
thereexist asetof resourcesfor whomresolutionmay
notbeappropriateafterthefact,andlargescaleactive
conflict avoidanceis a necessity.

2.2 Resource Distribution

Resourcedistribution describesthedegreeto which a
systemhasbeenspreadacrossanetwork, andhow dy-
namicresourcesarewithin it. Even the smallestde-
gree of resourcedistribution mandatesa substantial
amountof overheadwithin a system. Considerthe
differencebetweenaccessesto a local file versusa re-
motefile servicesuchasNFS: both casescontainall
of thecomplexity involvedin readinga file from disk,
however the remoteaccesshastheadditionalrespon-
sibilities of locating the service,marshallingdatain
andout of messagestructures,interactingacrossthe
network, andhandlingaconsiderablylargersetof po-
tentialerrorcases.

Transparency, a hallmark goal of distributed sys-
temsonly obfuscatesthis problemby concealingthe
detailsof distribution. Mechanismssuchas remote
procedurecalls (RPC),which were intendedto sim-
plify applicationdevelopment,forcedistribution to be
implementeddeepwithin thesystem.This resultsdi-
rectly in many of theproblemstraditionallyassociated
with distributedsystemssuchasfragility andinflexi-
bility.

The troubling aspectin this line of consideration
is that theseissuesindicatea fundamentalflaw at the
very onsetof approachesto distribution. RPCreally
only providesonedegreeof distribution, by passing
a call to a single remotehost. With RPC, we have
only just enteredthearenaof distributedsystems,and
alreadycomplexity is overbearing.

Assumingthat resourcescanbeaccessedin anex-
pressive andreliablemanner, a larger problemexists
in their distribution. In order to accessresources,it
mustbe possibleto first locatethem. Furthermore,if
resourcesarenot staticwithin a system,mechanisms
must exist to find them in an ongoingmanner. For
instance,the location of a resourcemay have to be
determinedthrougha directoryserviceandrefreshed
with eachsuccessive access. In very large scaleor
highly dynamicsystems,acentralizedservicemaynot
besufficientto trackresourcelocationandothermeth-
ods,suchasforwardingpointers[4], may have to be
employed.

2.3 Four Phyla of Applications

From the two axes describedabove, we draw four
phyla of distributedapplications,shown in Figure1.
Notethat therespectivesizesof thesedomainsareby
no meansequal,we representthis division asit is for
simplicity.

Whatfollowsis averybrief presentationof eachof
thefour classes.In eachcase,wesupplyanexampleof
thephylumto demonstrateits characteristics.We also



R
es

o
u

rc
e 

D
is

tr
ib

u
ti

o
n

Point−to−Point

Fragmented Peer−to−Peer
Resource

Multiplexed

Access Concurrency

Figure1: Taxonomyof DistributedApplications

try to identify weaknessesthatexist within thedomain
thatmaynotbeacceptablewithin moreadvancedsys-
tems.

2.3.1 Point-to-point

The point-to-pointphylum representsa very simple
setof applicationsin which a client connectsto a re-
sourcefor unsharedaccess.Point-to-pointexamples
exist primarily ascomponentsof morecomplex appli-
cations,for instancethe datachannelof an FTP ses-
sion is point-to point, in that all of the associatedre-
sourcesareallocatedatbothendsof theconnectionat
the beginning of a transfer. We would alsoconsider
simpleRPCto be primarily a point-to-pointapplica-
tion, providedthattheRPCserverhandlesasinglere-
questat a time.

Point-to-pointapplicationsarecharacterizedby the
factthatthedistributionaspectsof thesystemaretypi-
cally quitevisible. As such,whenfailuredoesoccurit
canbeidentifiedandresolvedprimitively by theuser.
If anFTPserverdoesnot respondor crashesduringa
transfer, theusercanattemptaconnectionsomewhere
else.Clearly this is not a goodsystemproperty, how-
ever it is generallytolerablewithin thedomainof sim-
pleapplications.

2.3.2 Multiplexed

Multiplexedapplicationsarethosein which resources
aredeliveredwith a high degreeof concurrency, and
possiblyconflict control,over a relatively small scale
of distribution. File and web servers are excellent
examplesof this phylum as they often provide a set
of centralizedresourcesto large numberof concur-
rentusers.Note that in our model,bothfile andweb
servershave a high degreeof accessconcurrency, but
arestill barelydistributed.This is becauseuserstypi-
cally needonly connectto a singlepoint to accessre-
sources.More distributedexamplesof a multiplexed
applicationsaredistributedstripedfile systems[18],
and scalabledata structures[15]. In both of these

cases,usersmaystill connectto a singleresource,but
that resourcemay forward requeststhroughan addi-
tional link to anappropriatesecondaryserver.

The risk of failure is more significant in multi-
plexed systemsbecause,on the resourceprovision
side, failure hasthe potentialto affect a muchlarger
numberof users.To mitigatethis problem,very large
multiplexed servicesare often served by specialized
hostingfacilitieswhereaveryhighdegreeof resource
reliability maybe assumed.Furtherprecautionsmay
involve the installation of redundantresourcesthat
takeover in therarecaseof systemfailure.

2.3.3 Fragmented Resource

Fragmentedsystemsarethosein which resourcesare
spreadacross,or movewithin, asetof connectedend-
points.Communicationis substantiallymorecomplex
in thesesystemsasmessagesmay not travel directly
to a resource,but insteadmayleadto a cascadeof in-
teractionsacrossthesystem.Thedomainnamingser-
vice (DNS) is a well-known exampleof this type of
system,anddemonstratesmany of theentailingdiffi-
culties. For example,theneedto protectseperatead-
ministrativedomainsoftenrequireupdatesto bemade
by hand,resultingin veryslow adaptation.

Fragmentedresourcesystemsprovide the benefit
of distributing resourcesin a broad scope,possibly
evenproviding redundancy. However, fragmentingre-
sourcesmeansthat administrationalso becomesdi-
vided,which addsanoverheadin termsof systemad-
ministrationandmaintenance.This propertymay be
anexplanationasto why moreadvanceddirectoryser-
vices,suchasLDAP, have failedto achievebroadac-
ceptancewithin theInternet.

2.3.4 Peer-to-peer

Peer-to-peerapplicationsarehighlydistributedandin-
volvea high degreeof potentiallyconflicting,concur-
rent accessto resources.This is a fairly hypothetical
description,as very few suchapplicationscurrently
exist at the Internetscale.Peer-basedfile sharingap-
plications,suchas Gnutella[1] and Freenet[7], are
initial stepswithin this domainbut only begin to en-
ter thephylum.Gnutelladoesnot needto addressany
conflict issues,norhasit provenableto scale.

In this classof application,the acceptableweak-
nesseswithin the other phyla compoundand cannot
be avoided. Failure hasa high potentialimpact,but
resourcescannotbeprotected.Administrationis dis-
tributedandthe couplingbetweenadministrative do-
mainsmaybecomemuchmoredynamic.We discuss
theseissuesmoreextensively in thenext section.



3 Open Architectural Problems

Based
�

on our taxonomyanda survey of existing sys-
tems,we identify a setof four prevalentarchitectural
problemsthatcurrentlyinhibit thedevelopmentof ad-
vanceddistributedsystems.Theseproblemsarefail-
ure resolution,resourcemanagement,administration,
andcommunicationinfrastructure.

3.1 Failure Resolution

Despitethe advancedstateof systemsresearch,we
arestill unableto definitively tell whenaresourcehas
failed. Non-terminalfailure states,suchas livelock
andByzantinefailureareincrediblydifficult to detect
andresolve. Furthermore,in largedistributedsystems,
small failureshave the potential to cascadeacrossa
system,snowballing towardsdisaster.

Traditionaldesigngoals,suchastransparency and
layering,force failure to be resolved inappropriately,
often requiring that it be masked within a system.
Generalpurposefailure handlerscannotpredict all
possiblefail states,andsoareunableto effectively ad-
dressout-of-bandfailure.

Theredoesnot currentlyexist anaccepted,univer-
sal approachto expressing,detecting,and resolving
failure in distributedsystems.Clearly, not all failures
canbedetectedandresolved,but in thissituation,it is
notclearwhatsystemsshoulddoto copeandmaintain
a degreeof sanity.

3.2 Resource Management

In order to carry reliable servicesbeyond the con-
fines of locked facilities, we needto be able to ex-
pectthesamereliablelevelsof servicefrom endnodes
andconnective infrastructurein the distributedenvi-
ronment. Applicationsdesiringa high degreeof re-
liability must be able to reserve resourcesand com-
fortably expectthat thosereservationswill beupheld.
Unfortuantely, the useof reservationsystemssuchas
RSVP[9] presentssupportfor thisproblembut donot
solve it. Reservation schemesinevitably presentthe
possibilityof a reductionin availableresources,a sit-
uationakin to partial failure,to which thereis no real
analogyin a local high speednetwork. Toleratinga
reductionin servicequality, or othersuddenchangein
resourceavailability requiressa fundamentalchange
in systemdesign.

Furthermore,in a highly distributedenvironmentit
is naive to assumethat resourceswill remainavail-
able. Applicationsmust be able to gracefully han-
dle resourcelossandreallocation.Additional mech-
anisms,suchasredundancy, mustbesupportedwithin
thesystemto guardagainstfailure.

3.3 Administration

The fragmentationof resourcesmandatesa needto
provideadaptable,configurablesystemsin anenviron-
mentwherecontrol itself is distributed. Modelsmust
be developedthatallow the scalingof administration
in systemswith arbitrary(i.e. non-hierarchical)struc-
ture. Systemsmustdefineandsupporttechniquesfor
allowing avarietyof levelsof trustin relationshipsbe-
tweenparticipants.

It is very likely that a solution to this particu-
lar areainvolvesthe localizationof administrationto
the highestpossibledegree. More specifically, indi-
vidual usersand local administrative bodieswill be
responsiblefor configuringall aspectsof their local
systems. However, in distributed systemswherere-
sourcescanpotentiallybesharedwith remote,admin-
istratively disjoint parties,mechanismsmustexist to
effectively handleandexpresschangesacrossadmin-
istrative boundaries. Thesemechanismsnecessarily
mustallow thedelegationof trustandresponsibilityin
anappropriatemanner.

3.4 Communication Infrastructure

Distributed systemsare dependenton, and arguably
definedby, their communicationsinfrastructure.Al-
though the existing TCP/IP network and overlying
network interfaceswithin operatingsystemshavesur-
passedall expectationsof scalability, they have also
remainedessentiallyunchangedfor the life of the In-
ternet. The existing network presentsmany hinder-
ancesto advanceddistributedsystemsandseveralare
worth addressingbriefly here.

Thereexists no well-developedinfrastructurefor
groupcommunications.IP multicast,althougha sub-
stantial improvement to the existing network, has
questionablescalability and performancefor use in
a large anddynamicsystemandmay possesssignif-
icant vulnerabilities. Non-multicastcommunication
remainsinextricably tied to (and identified by) end-
points,makingmobility andmanagementdifficult.

Moreimportantly, methodsof collaborationinvolv-
ing more than two participantsarenot yet available.
Interactingwith asetof resourcesisalmostuniversally
handledthrougha coordinatingresource,which typi-
cally leadsto a singlepoint of failureandcongestion
within systems.In orderfor peer-to-peerapplications
to becomea reality, mechanismsthatallow groupsto
work togetherin efficientwaysmustbedeveloped.



4 Open Adoptional Problems

Through
�

theuseof our taxonomy, we have beenable
to identify structural issuesrestrainingthe develop-
mentof advanceddistributedsystems.If all of these
issueswereto be solvedanda systemconstructed,it
would doubtlesslybe a considerableresearchcontri-
bution. However, we feel that sucha systemwould
inevitably flounderwere it to be madeavailable for
broadusewithin theInternet.In thissection,we iden-
tify a setof openproblemsthat arenot identifiedby
our taxonomy. Theseproblemsare not defineddi-
rectly by thestructureof a system,but ratherarenec-
essarypropertiesfor it to beusefulin therealworld.

4.1 Physical Resource Discovery and
Naming

It is incrediblydifficult to providea usefulintegration
betweendistributed systemsand the physicalworld.
Network topologies,especiallyasexposedby existing
protocols,provide an entirely unrepresentative view
of resourcelocation. A stronglydesiredpropertyof
advanceddistributedsystemsfor ubiquitous[14] and
pervasive [12] computingis to allow mobile usersto
adaptto locally available resources.For instance,it
is desirableto easilylocateandaccessa hotelprinter.
Althoughmuchwork hasemergedin recentyearsad-
dressingthe naminganddiscovery of resourcesin a
physicaldimension[17, 13], the problemhashardly
beensolved. The emergenceof mobile devices that
providegeographicinformationwill doubtlesslymake
this problemevenmorerelevant.

4.2 Security and Privacy

Concernsover privacy and security clearly escalate
as resourcesbecomemore distributed. Centralized,
andevenlightly distributedsystemshave provenable
to useaccesscontrol lists (ACLs) andencryptionto
effectively protect resources. However, as systems
(or perhapsadministration)becometoodistributedfor
centralizedsolutions,alternatemechanismsmust be
considered.Capabilitieshave beentoutedasa solu-
tion within the distributedcasethathave yet to seea
successfulbroadapplication.Capabilitieshave inher-
entproblemswith respectto accessrevocation,which
typically requiresthe rekeying of resourcesandreau-
thorizing clients. Furthermore,capabilitiesare very
difficult to administerandtrackwithin the context of
broad distribution. Finally, as long-lived resources
that areprotectedby encryption,capabilitiesmay be
vulnerableto attack.

4.3 Economies of Sharing

A frequentlycitedbenefitto thedevelopmentof fine-
graineddistributedsystemsis theopportunityto share
unusedresourceswith others[16, 5]. The reasoning
behindthis approachis that no oneusesall of their
resourcesall of the time, so a low-overheadsharing
schemeshouldbeglobally beneficial.Gnutellarepre-
sentsa real-world testof this philosophy, in thatusers
areable,but not required,to sharelocal fileswith oth-
ers. A studyfrom Xerox PARC [3] shows that users
do notbehavefairly andthata very few hostsactually
shareat all. OceanStore[8] proposesa utility-based
systemfor file storagein whichresourceswouldbeex-
changedandbilled betweenadministrationsin aman-
neranalogousto thepowersystem.Othersystemsfor
informationsharing[2] on thenethave involvedarti-
ficial economiesof karma,that is exchangedbetween
participants.

Thereis considerableopportunityto explore how
sharingshouldbeprovidedwithin distributedsystems.
An effectivesolutionto thisproblemwill haveastrong
effect on the overall successof thesesystems.Addi-
tionally, in a systemwhereresourcessuchasnetwork
bandwidthare sharedarbitrarily andperhapsanony-
mously, thereremainquestionsregardingthepayment
for theseservices.As the economyof the Internetis
basedon the traffic patternsof existing applications,
theemergenceof a widely adoptedsystemthatdrasti-
cally changesthesepatternshasthepotentialto disrupt
thefinancialoperationof thenetitself.

4.4 System Evolution

Simply providing a large scalesystemis a consider-
able feat. The ongoing maintenanceand evolution
of sucha systemis considerablymoredifficult. The
Internetis plaguedwith evolution issues,assystems
have not beendesignedwith changein mind. The
Hypertext Markup Language(HTML) has evolved
throughseveralgenerations,but authorsmuststill pro-
vide backwards-compatibilityfor legacy browsersat
theexpenseof beingableto usenew features.TheIn-
ternetitself is anoutstandingexampleof thisproblem:
thenext generationInternetprotocol,IPv6,hasbeenin
developmentandlimited usefor years. The implica-
tionsof rolling out theprotocolacrosstheentireInter-
net are incredible,andthe new protocolprovidesno
easiermechanismfor its own inevitableevolution.

Systemsmustbedesignedwith evolution in mind.
Architecturalassumptionsand applicationcouplings
mustbeminimizedwhereverpossible.Methodsmust
be developedthat allow completesystemsto be up-
gradedand changeddrasticallywith a low negative
impacton theenvironmentasa whole.



4.5 Heterogeneity

In
�

massive distributedsystems,it is not reasonableto
expector mandateuniformity acrossresources.To do
so limits innovation and flexibility and also inhibits
evolution, as describedabove. In order for systems
to be flexible and improve over time, the implemen-
tationrequirementsof individual resourcesmustbeas
light aspossible.Furthermore,therequirementsmust
themselvesbeableto changeover time.

4.6 Software Structure

The representationof the network within application
codeis often an abstractand independantfunctional
unit; client andserver sourcearecompletelydisjoint,
obscuringthecouplingthatis inherentwithin thesys-
tem. As statedabove, attemptsto build systemsthat
transparentlyhandledistribution make it impossible
to appropriatelyexposeand resolve failure. How-
ever, exposingdistribution completelyleadsto sys-
tems whosecomplexity makes applicationdevelop-
mentconsiderablymoredifficult.

Recently, the aspect-orientedprogramming(AOP)
community[6] hasfocusedattentionon the concept
of crosscuttingconcerns, whichareelementsof asys-
tem that cut throughthe primary systemmodularity.
They have proposedlinguistic mechanismsintended
toallow implementationof theseconcernsasfirst class
modules,calledaspects. AOPmaypresentthepoten-
tial to write codethat describesfunctionality across
thenetwork, while addressingfault andcontrol issues
appropriately. In AOP, we seewhat may be a new
meansof gainingthebenefitsof transparency without
theassociatedweaknesses.

5 Conclusion

The purposeof this paperhasbeento identify prob-
lems that necessarilymust be addressedin order to
developadvanced,Internet-scaledistributedsystems.
Througha taxonomicalobservation of existing sys-
tems, we have identified a set of openarchitectural
problemsincluding failure resolution,resourceman-
agement,administration,and communicationinfras-
tructure. We then presenteda set of six adoptional
problemswhosesolutionswill stronglysupporttheac-
ceptanceof large distributed applicationswithin the
network. Projectsto developenvironmentsfor ubiqui-
tous[14], invisible[10], andpervasive[12] distributed
applicationshave,andcontinueto be,veryexciting re-
searchthatwill needto addressmany of theseissues
in orderto realizetheir visions.

References
[1] Gnutella.http://gnutella.wego.com.

[2] Mojo nation.http://www.mojonation.com/.

[3] E. Adar andB. Huberman. Freeriding on Gnutella.
Technicalreport,XeroxPARC, August2000.

[4] C. Amza andA. Cox. Treadmarks:Sharedmemory
computingon networks of workstations. IEEE Com-
puter, Feb1996.

[5] J. Basney, M. Livny, andT. Tannenbaum.Deploying
a high throughputcomputingcluster. In High Perfor-
manceClusterComputing. PrenticeHall, 1999.

[6] G. Kiczaleset al. Aspect-orientedprogramming. In
EuropeanConferenceon Object-OrientedProgram-
ming(ECOOP), 1997.

[7] I. Clarke et al. Freenet:A distributedanonymousin-
formationstorageandretrieval system.In Proc.of the
ICSIWorkshoponDesignIssuesin AnonymityandUn-
observability, 2000.

[8] J. Kubiatowicz et.al. Oceanstore:An architecturefor
global-scalepersistantstorage.In ASPLOS, 2000.

[9] L. Zhangetal. RSVP:A new resourcereservationpro-
tocol. IEEE NetworkMagazine, September1993.

[10] M. Esleret al. Next centurychallenges:Data-centric
networking for invisible computing. In Mobile Com-
putingandNetworking, 1999.

[11] M. Satyanarayananet al. Coda: A highly available
file systemfor a distributedworkstationenvironment.
IEEE Transactionson Computers, 39(4),1990.

[12] R. Grimm et al. A systemarchitecturefor pervasive
computing. In ACM SIGOPSEuropeanWorkshop,
September2000.

[13] S. E. Czerwinskiet al. An architecturefor a secure
servicediscovery service. In Mobile Computingand
Networking, 1999.

[14] S. Gribble et al. The ninja architecturefor robust
internet-scalesystemsandservices. In SpecialIssue
of ComputerNetworksonPervasiveComputing, 2000.

[15] S. Gribble et al. Scalable,distributeddatastructures
for internetserviceconstruction.In OSDI, 2000.

[16] T. E. Andersonet al. Serverlessnetwork file sys-
tems.ACM TransactionsonComputerSystems, 14(1),
February1996.

[17] W. Adjie-Winotoetal. Thedesignandimplementation
of anintentionalnamingsystem.In SOSP, 1999.

[18] J. HartmanandJ. Ousterhout.TheZebrastripednet-
work file system.ACM TransactionsonComputerSys-
tems, 13(3),1995.


