

SCORM Content Aggregation Model

Version 1.3

JANUARY 30, 2004

Advanced Distributed Learning (ADL)

Sharable Content Object Reference Model (SCORM®)

Content Aggregation Model (CAM) Version 1.3

Available at ADLNet.org (http://www.adlnet.org/)

For questions and comments visit the ADL Help & Info Center at ADLNet.org

Chief Technical Architect Philip Dodds

Technical Editor Schawn E. Thropp

Key ADL Technical Team Contributors to the SCORM Content Aggregation Model Version 1.3:

William Capone
Clark Christensen
Jeffrey M. Falls
Dexter Fletcher
Matthew Handwork
Rob Harrity
Sue Herald
Alan Hoberney
Paul Jesukiewicz
Kirk Johnson

Mary Krauland
Jeff Krinock
Lori Morealli
Angelo Panar
Douglas Peterson
Jonathan Poltrack
Betsy Spigarelli
Schawn E.Thropp
Bryce Walat
Jerry West

Key ADL Community Contributors to the SCORM Content Aggregation Model Version 1.3:

Mike Bednar Bill Blackmon Howard Fear Lenny Greenberg Peter Hope Boyd Nielsen Claude Ostyn Nina Pasini Dan Rehak Tyde Richards Roger St. Pierre Brendon Towle

Acknowledgements

ADL would like to thank the following organizations and their members for their continued commitment to building interoperable e-learning standards and specifications:

Alliance of Remote Instructional Authoring & Distribution Networks for Europe (ARIADNE) (http://www.ariadne-eu.org/)

Erik Duval Eddy Forte Florence Haenny Ken Warkentyne

Aviation Industry CBT Committee (AICC) (http://www.aicc.org/)

Jack Hyde Bill McDonald Anne Montgomery

Institute of Electrical and Electronics Engineers (IEEE) Learning Technology Standards Committee (LTSC) (http://ltsc.ieee.org/)

Erik Duval Mike Fore Wayne Hodgins Tyde Richards Robby Robson

IMS Global Learning Consortium, Inc. (http://www.imsglobal.org/)

Thor Anderson Steve Griffin Mark Norton Ed Walker

(At Large)

Bob Alcorn Chantal Paquin
Tom Grobicki Mike Pettit
Tom King Tom Rhodes
Chris Moffatt Kenny Young

...and many others.

ADL would also like to thank the ADL Community for their commitment and contribution to the evolution of SCORM.

COPYRIGHT

Copyright 2004 Advanced Distributed Learning (ADL). All rights reserved.

DISTRIBUTION

Permission to distribute this document is granted under the following conditions:

- 1. The use of this document, its images and examples is for non-commercial, educational or informational purposes only.
- 2. The document, its images and examples are intact, complete and unmodified. The complete cover page, as well as the COPYRIGHT, DISTRIBUTION and REPRODUCTION sections are consequently included.

REPRODUCTION

Permission to reproduce this document completely or in part is granted under the following conditions:

- 1. The reproduction is for non-commercial, educational or informational purposes only.
- 2. Appropriate citation of the source document is used as follows:

Source: Advanced Distributed Learning (ADL), Sharable Content Object Reference Model (SCORM®) Content Aggregation Model Version 1.3, 2004.

For additional information or questions regarding copyright, distribution and reproduction, contact:

ADL Co-Laboratory 1901 North Beauregard Street, Suite 106 Alexandria, VA 22311 USA (703) 575-2000

Table of Contents

SECTION 1	SCORM Content Aggregation Model (CAM) Overview	1-1
1.1. Inte	RODUCTION TO THE SCORM CONTENT AGGREGATION MODEL (CAM) BOOK	1-3
1.1.1.	What is Covered in the SCORM Content Aggregation Model (CAM) Book?	1-3
1.1.2.	Using the SCORM CAM Book	1-4
1.1.3.	Relationship with Other SCORM Books	1-5
1.2. The	SCORM CONTENT AGGREGATION MODEL	
SECTION 2	The SCORM Content Model	2-1
2.1. SCC	ORM CONTENT MODEL COMPONENTS	2-3
2.1.1.	Asset	
2.1.2.	Sharable Content Object (SCO)	
2.1.3.	Content Organization.	
2.1.4.	SCORM Meta-data Components	
	SCORM Content Packaging	
	TENT PACKAGING OVERVIEW	
	TENT PACKAGE COMPONENTS	
3.2.1.	Package	
3.2.2.	Manifest	
3.2.3.	Package Interchange File (PIF)	
3.3. Com	IPONENTS OF A MANIFEST	
3.3.1.	Meta-data	
3.3.2.	Organizations	
3.3.3.	Resources	
3.3.4.	Physical Files	
3.4. Buii	DING CONTENT PACKAGES	
3.4.1.	Manifest File	
3.4.2.	(Sub)Manifests	
3.4.3.	Content Package Manifest Extensions	
3.4.4.	Content Package Manifest Href Handling	
	ORM CONTENT PACKAGE APPLICATION PROFILES	
3.5.1.	Resource Package	
3.5.2.	Content Aggregation Package	
3.5.3.	SCORM Content Package Application Profile Requirements	
3.6. BES'	Γ PRACTICES AND PRACTICAL GUIDELINES	
3.6.1.	Packaging Multiple Courses	3-60
3.6.2.	Multiple Organizations for a Single Course	
3.6.3.	Packaging Learning Content for Reuse	
3.6.4.	Using the <dependency> Element</dependency>	
	SCORM Meta-data	
	ORM META-DATA OVERVIEW	
	ORM META-DATA CREATION	
4.2.1.	<lom> Element</lom>	
4.2.2.	<general> Element</general>	
4.2.3.	Element	
4.2.4.	<metametadata> Element</metametadata>	
4.2.5.	<technical> Element</technical>	
4.2.6.	<educational> Element</educational>	
4.2.7.	<rights> Element</rights>	
4.2.8.	<relation> Element</relation>	
4.2.9.	<annotation> Element</annotation>	4-78

4.2.10.	<classification> Element</classification>	
4.2.11.	Common Data Types	4-91
4.3. LOI	M XML SCHEMA VALIDATION APPROACHES	4-96
4.3.1.	Strict Schema Validation Approach	4-96
4.3.2.	Custom Schema Validation Approach	4-97
4.3.3.	Loose Schema Validation Approach	4-97
4.4. MET	ra-data Extensions	4-98
4.4.1.	Data Element Extension	4-99
4.4.2.	Vocabulary Extension	4-100
4.5. SCC	ORM META-DATA APPLICATION PROFILES	4-103
4.5.1.	Associating Meta-data with SCORM Components	4-104
4.5.2.	SCORM Meta-data Application Profile Requirements	4-109
SECTION 5	SCORM Sequencing and Presentation	5-1
5.1. SEQ	UENCING AND PRESENTATION	5-3
5.1.1.	<sequencing> Element</sequencing>	5-3
5.1.2.	<controlmode> Element</controlmode>	5-5
5.1.3.	<sequencingrules> Element</sequencingrules>	5-7
5.1.4.	Element	5-15
5.1.5.	<auxiliaryresources> Element</auxiliaryresources>	5-17
5.1.6.	<rolluprules> Element</rolluprules>	5-18
5.1.7.	<objectives> Element</objectives>	
5.1.8.	<randomizationcontrols> Element</randomizationcontrols>	5-32
5.1.9.	<deliverycontrols> Element</deliverycontrols>	
5.1.10.	<pre><constrainedchoiceconsiderations> Element</constrainedchoiceconsiderations></pre>	5-35
5.1.11.	<rollupconsiderations> Element</rollupconsiderations>	5-37
5.1.12.	<sequencingcollection> Element</sequencingcollection>	5-39
5.2. Pre	SENTATION/NAVIGATION INFORMATION	5-41
5.3. Rel	ATIONSHIP TO CONTENT PACKAGING	5-44
	A Acronym Listing	
	ing	
APPENDIX 1	B References	B-1
APPENDIX (C Document Revison History	C-1
Document Re	vision History	C-3

SECTION 1

SCORM Content Aggregation Model (CAM) Overview

1.1. Introduction to the SCORM Content Aggregation Model (CAM) Book

The SCORM is often described as a set of books on a bookshelf. The Content Aggregation Model (CAM) book is one of a set of books (refer to Figure 1.1a: *The Content Aggregation Model Book as Part of the SCORM Bookshelf*). More information on the other SCORM books and their relationships to one another can be found in the SCORM 2004 Overview. The SCORM CAM book describes the components used in a learning experience, how to package those components for exchange from system to system, how to describe those components to enable search and discovery and how to define sequencing rules for the components. The CAM promotes the consistent storage, labeling, packaging, exchange and discovery of learning content.

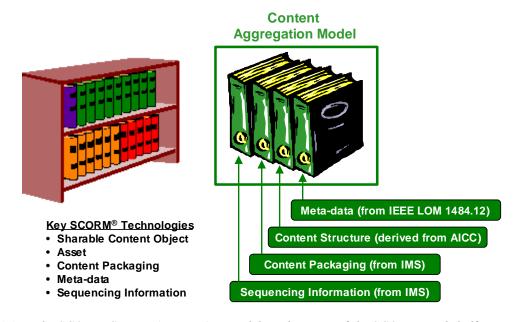


Figure 1.1a: The SCORM Content Aggregation Model Book as part of the SCORM Bookshelf

1.1.1. What is Covered in the SCORM Content Aggregation Model (CAM) Book?

There are several key concepts that are introduced in the SCORM Content Aggregation Model (CAM) book. The book describes responsibilities and requirements for building content and content organizations (e.g., course, lessons, modules, etc). The book contains information on creating content packages, applying meta-data to the components in the content package and applying sequencing and navigation details in the context of a content package. SCORM Content Packaging, as described in this book, provides a consistent form for describing content structures, learning content, the meta-data that describes the various components of the content structures and sequencing and navigation rules. This consistency facilitates search and discovery of content packages and their

resources (helping facilitate reuse of SCORM-conformant content), building of content organizations that will behave in a similar manner from system to system and standard understanding of the contents of the content package. General subjects discussed include:

- Content Model: definition of common terminology used throughout the CAM book
- Content Packaging: descriptions and requirements for aggregating and bundling learning content
- Meta-data: descriptions and requirements for describing SCORM components
- Sequencing and Navigation: descriptions and requirements for defining sequencing and navigation information

1.1.2. Using the SCORM CAM Book

This book will assist authoring tool vendors, content developers and anyone else wishing to create or edit:

- SCORM Content Model Components (Assets, SCOs and Content Organizations),
- SCORM Content Packages (with or without sequencing and navigation rules) or
- SCORM Meta-data

This book will also assist those who develop systems that receive content packages. Various requirements are defined throughout the book that describe how to process content packages.

Early portions of this book, Section 1: *The SCORM Content Aggregation Model (CAM) Overview* through Section 2: *The SCORM Content Model*, cover general CAM-related concepts. These sections are recommended reading for those seeking an introduction to the concepts behind the SCORM CAM and who may not wish to delve into its technical details. Others who may find these sections useful include those wishing to learn about updates to the SCORM CAM. Section 2.1.3: *Content Organization*, for instance, discusses how Activities impact the SCORM CAM.

Section 3: SCORM Content Packaging is the first section of this book providing technical details specific to the CAM. It describes Manifests, Content Packages, SCORM Content Organization Package Application Profile, SCORM Resource Package Application Profile and Best Practices and Practical Guidelines. This section covers not only the technical details about the various individual components of SCORM Content Packages, but it also covers how to assemble content packages, showing snippets of Manifests with explanations.

Section 4: *SCORM Meta-Data* covers all aspects of creating meta-data for labeling purposes, to include the Learning Object Metadata (LOM) Extensible Markup Language (XML) Validation Approaches, meta-data extensions and meta-data application profiles. The section also describes how to associate meta-data to SCORM Content Model Components in a content package

Section 5: *SCORM Sequencing and Navigation* covers ways in which the introduction of Sequencing and Navigation affect the SCORM Content Aggregation Model. The section also outlines how to build Sequencing and Navigation rules in XML and how to place those rules in a content package manifest. The section describes the requirements for building XML that represents the desired sequencing strategies.

1.1.3. Relationship with Other SCORM Books

While the various SCORM books are intended to stand alone, there are areas of overlap or mutual coverage. For instance, while this book focuses primarily on elements of SCORM content such as SCOs and Assets, those objects are launched by SCORM-conformant LMSs, and so the SCORM Run-Time Environment book [16], covering content launch is mentioned numerous times.

Similarly, while the Sequencing and Navigation (SN) book covers the details of SCORM sequencing and navigation processes, including detailed coverage of how an LMS evaluates navigation requests and related activities, this book deals with manifests which contain the sequencing rules described by the Sequencing and Navigation book, and so some of the basics of sequencing and navigation are touched on.

To help clarify areas of overlap, Section 1.1.3.1: *The SCORM Run Time Environment Book* and Section 1.1.3.2: *The SCORM Sequencing and Navigation Book* provide brief descriptions of the contents of these SCORM books.

1.1.3.1. The SCORM Run-Time Environment Book

The purpose of the SCORM RTE is to provide a means for interoperability between SCOs and LMSs. SCORM provides a means for learning content to be interoperable across multiple LMSs regardless of the tools used to create the content. For this to be possible, there must be a common way to launch content, a common way for content to communicate with an LMS and predefined data elements that are exchanged between an LMS and content during its execution. The three components of the SCORM RTE are defined in this document as Launch, Application Program Interface (API) and Data Model. The technical details of these elements are described in the SCORM RTE book, but a brief overview of each of these elements of the RTE follows.

Launch includes defining the relationship between LMSs and SCORM content such that all SCORM-conformant content is dependant upon a SCORM-conformant LMS to be delivered and displayed to the learner. In addition, LMSs have the responsibility to determine which SCORM content is to be delivered next. These new responsibilities, described in the SCORM SN book, are also touched on in the SCORM RTE book.

The SCORM API, as described in the SCORM RTE book, provides a set of predefined methods that are agreed upon by both LMS vendors and content authoring tool vendors to be made available for purposes of communication between an LMS and the SCOs it launches. These functions complete the launch process by providing a means to establish a "handshake" between the SCO and the LMS that launched it, and to break that

handshake when the learning session with the SCO is terminated. In addition, they provide the means for SCORM content to "set" and "get" data on the LMS, such as assessment results, and to check for and warn the user about any errors that may occur during these processes.

The SCORM Run-Time Environment Data Model, as described in the SCORM RTE book, provides the data elements that can be used to "get" and "set" data from and to an LMS. For instance, when passing a test score from a learner, a SCO would use the SCORM Run-Time Environment Data Model element known as cmi.score.scaled to inform the LMS how a user performed in the test. This and all other SCORM Data Model elements are described in detail in the SCORM RTE book.

Various concepts described in the CAM have impacts on the SCORM RTE. Data defined in a content package manifest impact some initial values for some of the SCORM Run-Time Environment Data Model elements. Data from the manifest is used in the process of delivering and launching content to the learner and impacts the run-time environment. These and other relationships are described throughout the CAM.

1.1.3.2. The SCORM Sequencing and Navigation Book

The SCORM SN book is based on the IMS Simple Sequencing (SS) Specification Version 1.0, which defines a method for representing the intended behavior of an authored learning experience such that any conformant LMS will sequence discrete learning activities in a consistent way.

The SCORM S N Model defines how IMS Simple Sequencing applies and is extended in a SCORM environment. It defines the required behaviors and functionality that SCORM-conformant LMSs must implement to process sequencing information at runtime. More specifically, it describes the branching and flow of learning activities in terms of an Activity Tree, based on the results of a learner's interactions with launched content objects and an authored sequencing strategy. An Activity Tree is a conceptual structure of learning activities managed by the LMS for each learner.

The SCORM S N book describes how learner-initiated and system-initiated navigation events can be triggered and processed, resulting in the identification of learning activities for delivery. Each learning activity identified for delivery will have an associated content object. The SCORM RTE model describes how identified content objects are launched. The sequence of launched content objects, for a given learner and content structure, provides a learning experience (learner interaction with content objects); the SCORM RTE model describes how the LMS manages the resulting learning experience and how that learning experience may affect the Activity Tree.

Various concepts described in the CAM have relationships to the SCORM SN book. The CAM describes how to build sequencing rules and represent those rules in the XML. The CAM then describes how to build onto the existing manifest to apply these sequencing rules. See the SCORM Sequencing and Navigation book for more details on the relationship between the XML binding of the sequencing rules and the processes and behaviors of those rules.

1.2. The SCORM Content Aggregation Model

The SCORM Content Aggregation Model represents a learning taxonomy neutral means for designers and implementers of instruction to aggregate learning resources for the purpose of delivering a desired learning experience. A learning resource is any representation of information that is used in a learning experience. Learning experiences consist of activities that are supported by electronic or non-electronic learning resources.

One activity in the process of creating and delivering learning experiences involves the creation, discovery and gathering together, or aggregation, of simple assets into more complex learning resources and then organizing the resources into a predefined sequence of delivery. The SCORM Content Aggregation Model supports this process and is made up of the following:

- Content Model: Nomenclature defining the content components of a learning experience.
- Content Packaging: Defines how to represent the intended behavior of a learning experience (Content Structure) and how to aggregate activities of learning resources for movement between different environments (Content Packaging).
- Meta-data: A mechanism for describing specific instances of the components of the content model.
- Sequencing and Navigation: A rule-based model for defining a set of rules that describe the intended sequence and ordering of activities. The activities may or may not reference learning resources to be delivered to the learner.

SECTION 2 The SCORM Content Model

2.1. SCORM Content Model Components

The SCORM Content Model describes the SCORM components used to build a learning experience from learning resources. The Content Model also defines how these lower-level sharable, learning resources are aggregated into higher-level units of instruction. The SCORM Content Model is made up of Assets, Sharable Content Objects (SCOs) and Content Organization.

2.1.1. Asset

The most basic form of a learning resource is an Asset. Assets are an electronic representation of media, such as text, images, sound, assessment objects or any other piece of data that can be rendered by a Web client and presented to a learner. More than one asset can be collected together to build other assets.

An Asset can be described with Asset Meta-data (see Asset Meta-data definition below) to allow for search and discovery within repositories, thereby enabling opportunities for reuse. The manner for associating Assets to Asset Meta-data is the Content Package (Refer to Section 3: *SCORM Content Packaging*).

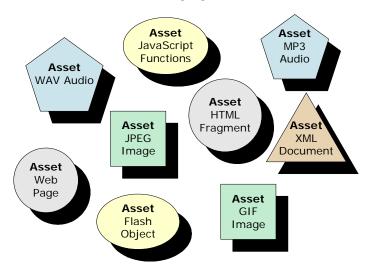


Figure 2.1.1a: Examples of Assets

2.1.2. Sharable Content Object (SCO)

A SCO is a collection of one or more Assets that represent a single launchable learning resource that utilizes the SCORM RTE to communicate with LMSs. A SCO represents the lowest level of granularity of a learning resource that is tracked by an LMS using the SCORM Run-Time Environment Data Model. The only difference between a SCO and an Asset is that the SCO communicates with an LMS using the IEEE ECMAScript

Application Programming Interface for Content to Runtime Services Communication draft standard [1]. Figure 2.1.2a below shows an example of a SCO composed of several Assets.

To improve reusability, a SCO should be independent of its learning context. For example, a SCO could be reused in different learning experiences to fulfill different learning objectives. In addition, an Activity (see Content Organization) may aggregate more than one SCO resource (and/or Asset resource) to form a higher-level unit of instruction or training that fulfills higher level learning objectives.

SCOs are intended to be subjectively small units, such that potential reuse across multiple learning contexts is feasible. SCORM does not impose any particular constraints on the exact size of a SCO. During content design and authoring activities, when determining the size of a SCO, thought should be given to the smallest logical size of content to be tracked by an LMS at run-time. Reuse requirements for an organization will impact decisions about the size of SCOs. Other factors that may impact the decisions about the size of SCOs include how much information is required to achieve a learning outcome and the point where a branching decision is required for sequencing.

A SCO can be described with SCO Meta-data (see SCO Meta-data definition below) to allow for search and discovery within repositories, thereby enabling opportunities for reuse. The manner for associating SCOs to SCO Meta-data is the Content Package (Refer to Section 3: SCORM Content Packaging).

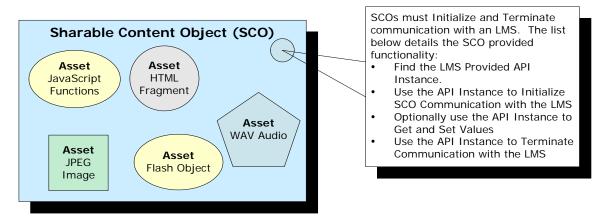


Figure 2.1.2a: Sharable Content Object

A SCO is required to adhere to the requirements defined in the SCORM Run-Time Environment [2]. This implies that it must have a means to locate an LMS provided API Instance and must invoke the minimum API methods (Initialize("") and Terminate("")). There is no obligation to invoke any of the other API methods as those are optional and depend upon the nature of the content.

The requirement that a SCO must utilize the SCORM RTE yields the following benefits:

 Any LMS that supports the SCORM RTE can launch SCOs and track them, regardless of who generated them;

- Any LMS that supports the SCORM RTE can track any SCO and know when it has been started and when it has ended; and
- Any LMS that supports the SCORM RTE can launch any SCO in the same way.

2.1.3. Content Organization

A Content Organization is a map that represents the intended use of the content through structured units of instruction (Activities). The map shows how Activities relate to one another. Figure 2.1.3a below shows an example of a Content Organization.

The Activities represented in a Content Organization may consist of other Activities (sub-Activities), which may themselves consist of other activities. There is no set limit to the number of levels of nesting for Activities. While learning taxonomies may be associated with hierarchical levels of Activities, (e.g., course, chapter, module, etc.), this is not a requirement. Activities that do not consist of other Activities (leaf activities) will have an associated learning resource (SCO resource or Asset resource) that is used to perform the activity.

Activities that consist of other Activities are also called Clusters in the SCORM SN book. Refer to the SCORM SN book for more details on how behaviors can be defined for Activities and Clusters.

Content Organization Meta-data can describe Content Organizations, thereby enabling opportunities for reuse. The manner of associating a Content Organization to Content Organization Meta-data is the Content Package as described in SCORM.

Each Activity in a Content Organization can reference Activity Meta-data to allow for search and discovery within repositories, thereby enabling opportunities for reuse. The manner for associating Activities to Activity Meta-data is the Content Package (Refer to Section 3: *SCORM Content Packaging*).

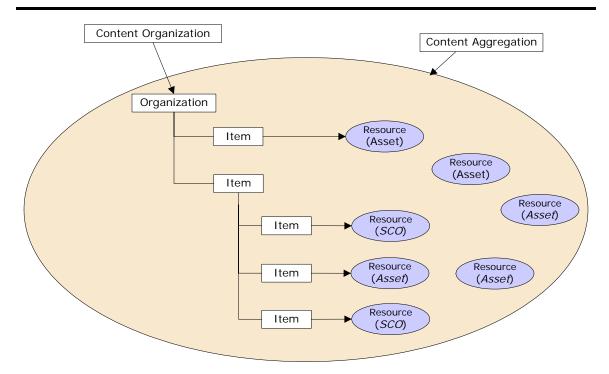


Figure 2.1.3a: Content Organization

Sequencing only applies to Activities. The intended sequencing of Activities is defined as part of the Content Organization, by structuring Activities in relation to one another and by associating sequencing information with each Activity. The LMS is responsible for interpreting the sequencing information described in the Content Organization and applying sequencing behaviors (Refer to Section 5: *SCORM Sequencing and Navigation* of this document for details on Sequencing) to control the actual sequence of the learning resources at run-time.

This development strategy represents a departure from the way courseware has been developed using stand-alone computer-based training (CBT) authoring tools. In the past, these tools typically embedded all of the sequencing and navigation information that governs what part of the course the student will view next in proprietary data formats. In nearly all cases, authoring tools or systems defined and implemented proprietary and sometimes unique sequencing methods for content. Before the arrival of SCORM and the shift toward an interoperable development strategy, it was extremely difficult to share content between different authoring environments and equally difficult to reuse content in other contexts that involved different sequencing requirements.

Within SCORM, sequencing information is defined on the Activities represented in the Content Organization and is external to the learning resources associated with those Activities. It is the responsibility of the LMS to launch learning resources associated with the activities in response to applying the defined sequencing behaviors. This is conceptually important because learning resource reuse is limited if a learning resource has embedded sequencing information that is *context-specific* to the course. For example, if a learning resource contained a "hardwired" branching to another learning resource under specific conditions, it could not be used in a different course in which the second

learning resource might not be applicable or available. The reusability of a learning resource depends on it being independent and self-contained.

SCORM recognizes, however, that some learning resources may contain internal logic to accomplish a particular learning task. Such a learning resource might branch within itself depending on user interactions. These branches are all self-contained, relevant to a standalone learning resource and are not usually visible to the LMS. Importantly, internal branching must not reference external learning resources that may or may not be present in other content organizations. This is an important area that content developers should pay attention to when determining what learning resources should be used and how they are to be aggregated.

2.1.4. SCORM Meta-data Components

The SCORM Meta-data Profiles represents a mapping and recommended usage of the IEEE Learning Technology Standards Committee (LTSC) Learning Object Metadata (LOM) elements for each of the SCORM Content Model components. In general, guidance is provided for meta-data to be applied to Assets, SCOs, Activities and Content Organizations to describe them in a consistent fashion such that they can be identified, categorized, searched for and discovered within and across systems to further facilitate sharing and reuse.

Policies governing the application of meta-data to the components of the Content Aggregation Model should be defined within organizations that wish to enable reuse based on the requirements of those organizations. SCORM does not seek to impose requirements related to the scope of meta-data tagging of Content Model components, but rather seeks to provide practical, standards-based guidance for those organizations wishing to enable sharing and reuse.

2.1.4.1. Content Aggregation Meta-data

Content Aggregation Meta-data describes the content aggregation (i.e., the content package) as a whole. The purpose of applying Content Aggregation Meta-data is to enable discoverability of the Content Aggregation and to provide descriptive information about the Content Aggregation as a whole.

2.1.4.2. Content Organization Meta-data

Content Organization Meta-data describes the Content Organization. The purpose of applying Content Organization Meta-data is to enable discoverability within, for example, a content repository and to provide descriptive information about the content structure, as a whole, defined by the Content Organization.

2.1.4.3. Activity Meta-data

Activity Meta-data describes an individual Activity. The purpose of applying Activity Meta-data is to make the Activity accessible (enabling discovery) within a content repository. The meta-data should describe the Activity as a whole. The requirements for any meta-data built for an Activity shall match those requirements set forth in the Activity Meta-data Application Profile.

2.1.4.4. SCO Meta-data

Meta-data can be applied to SCOs to provide descriptive information about the content in the SCO independent of any usage or potential usage within courseware content. This meta-data is used to facilitate reuse and discoverability of such content within, for example, a content repository. The requirements for any meta-data built for a SCO shall match those requirements set forth in the SCO Meta-data Application Profile.

2.1.4.5. Asset Meta-data

Meta-data can be applied to Assets to provide descriptive information about the Assets independent of any usage or potential usage within courseware content. This meta-data is used to facilitate reuse and discoverability, within, for example, a content repository during content creation. The requirements for any meta-data built for an Asset shall match those requirements set forth in the Asset Meta-data Application Profile.

2.1.4.6. Application of Meta-data

The mechanism for binding the Content Model components that were discussed earlier to the matching Meta-data application profile is the Content Package as described in SCORM. There are currently five places meta-data can be applied within a content package:

- Manifest: Meta-data at the manifest level (i.e., Content Aggregation Meta-data) must be conformant to the IEEE LTSC LOM binding but has no additional SCORM restrictions. This Meta-data is outside the scope of SCORM and does not fall into one of the aforementioned application profiles.
- **Organization**: Meta-data at the organization level describes the Content Organization as a whole. This may be a course, unit, lesson or any other organized instructional unit. Meta-data placed at the organization level is SCORM *Content Organization Meta-data*.
- **Item:** Meta-data at the item level describes a nested hierarchy of Activities in a context sensitive manner. When associated with an item, the SCORM *Activity Meta-data* definition must be used.
- **Resource:** Meta-data at the resource level describes a SCO resource or an Asset resource in a context insensitive manner. This meta-data is bound by either the SCORM *SCO Meta-data* or *Asset Meta-data* definitions (Determined by the type of resource <adlcp:scormType>).

File: Meta-data at the file level describes an Asset in a context insensitive manner. This meta-data is bound by the SCORM <i>Asset Meta-data</i> definition.						

SECTION 3 SCORM Content Packaging

3.1. Content Packaging Overview

Once learning content is designed and built, there is a need to make the content available to learners, authoring tools, repositories or Learning Management Systems (LMSs). The IMS Content Packaging Specification was designed to provide a standard way to structure and exchange learning content.

The purpose of the Content Package is to provide a standardized way to exchange learning content between different systems or tools. The Content Package also provides a place for describing the structure (or organization) and the intended behavior of a collection of learning content.

Content packages are expected to be used to move learning content or collections of learning content between LMSs, development tools and content repositories. The IMS Content Packaging Specification [3] provides a common "input/output" format that any system can support.

SCORM Content Packaging is a set of specific requirements and guidance, or application profiles, of the IMS Content Packaging Specification. SCORM Content Packages adheres *strictly* to the IMS Content Packaging Specification and provides additional explicit requirements and implementation guidance for packaging Assets, SCO and Content Organization.

This section is organized as follows:

Section 3.2: *Content Package Components* defines the key concepts that deal with a content package. These key concepts are useful for getting a base understanding of a content package before describing the specific requirements.

Section 3.3: *Components of a Manifest* defines the makeup of a Content Package manifest. The manifest acts as the "packaging slip" for the content package. It describes the components of the content package.

Section 3.4: *Building Content Packages* defines the process of building a content package. The section focuses on the creation of the content package and the manifest file. The section describes the XML components of the manifest and the requirements for using those XML components.

Section 3.5: *SCORM Content Package Application Profiles* defines specifically how to create SCORM-conformant packages that contain Assets, SCOs and Content Organizations (courses or topics). This section describes the two types of application profiles and the requirements associated with those profiles.

Section 3.6: *Best Practices and Practical Guidelines* defines a collection of best practices and guidelines when building or processing content packages.

3.2. Content Package Components

This section contains an overview of content packages, the nomenclature used to describe content packages and the makeup of content packages. The IMS Content Packaging Specification describes data structures that are used to provide interoperability of Internet-based content with authoring tools, LMSs and run-time environments. The objective of the IMS Content Packaging Specification is to define a standardized set of structures that can be used to exchange content. The scope of the IMS Content Packaging Specification is focused on defining interoperability between systems that wish to import, export, aggregate and disaggregate content packages.

An IMS Content Package contains two major components:

- A special XML document describing the content structure and associated resources of the package called the manifest file (imsmanifest.xml). Refer to Section 3.3: *Components of a Manifest* for more details on manifests. A manifest is required to be present at the root of the content package.
- The physical files making up the content package.

Figure 3.2a is a conceptual diagram that illustrates the components of an IMS Content Package.

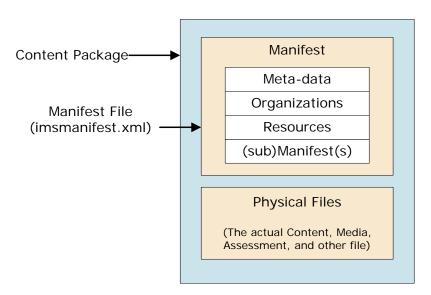


Figure 3.2a: Content Package Conceptual Diagram

3.2.1. Package

A package represents a unit of learning. The unit of learning may be part of a course that has instructional relevance outside of a course organization and can be delivered

independently, as a portion of a course, an entire course or as a collection of courses. Once a package arrives at its destination, the package must allow itself to be disaggregated or aggregated. A package must be able to stand alone; that is, it must contain all the information needed to use the packaged contents for learning when it has been unpacked.

3.2.2. Manifest

A manifest is an XML document that contains a structured inventory of the content of a package. If the content package is intended for delivery to an end user, the manifest also contains information about how the content is organized.

The scope of a manifest is elastic. A manifest can describe part of a course that can stand by itself outside of the context of a course (an "instructional object"), an entire course, a collection of courses, or just a collection of content that is to be shipped from one system to another. When packaging a collection of courses, such a content package would typically have to be disaggregated in order to be delivered to learners in a practical LMS run-time system. How to do this disaggregation is out of scope with this version of SCORM. At this point there is no consensus or standard on how to publish a very large or very complex package in a practical LMS, because of different LMS systems and repositories use different methods to represent or store the learning content to deliver to learners.

The general rule is that a package always contains a single top-level manifest that may contain one or more (sub)manifests. The top-level manifest always describes the package. Any nested (sub)manifests describe the content at the level at which the (sub)manifest is scoped, such as "course", "instructional object" or other.

The manifest shall adhere to the following requirements (as defined by the IMS Content Packaging Specification)

- The manifest file shall be named imsmanifest.xml
- The imsmanifest.xml and any of its supporting control files (e.g., DTD, XSD) shall be at the root of the content package. If extensions are used to describe organizational defined features and those features are represented in XML, then any and all control files also are required to be at the root of the package. This includes any and all control files needed to validate XML instances including those referenced by the <adlcp:location> element.
- All requirements defined in the IMS Content Packaging XML Binding Specification, any restrictions and additional requirements to the IMS binding as defined in Section 3.4: *Building Content Packages*.

3.2.3. Package Interchange File (PIF)

The Package Interchange File (PIF) is a binding of the content package components in the form of a compressed archive file. The PIF contains the imsmanifest.xml, all

control files and the resources referenced in the content package (those that are local to the PIF, i.e., contained in the content package). SCORM recommends that content packages be created as PIFs. The PIF provides a concise Web delivery format that can be used to transport content packages between systems. If a PIF is used for representing the content package, SCORM requires that the PIF be conformant with RFC 1951 [12]. In addition to this requirement, SCORM mandates that the archive format be PKZip v2.04g (.zip). This .zip file is conformant to RFC1951.

3.3. Components of a Manifest

The manifest file represents the information needed to describe the contents of the package. Figure 3.3a describes the makeup of a manifest file.

Figure 3.3a: Components of a Manifest

The manifest is composed of four major sections:

- Meta-data: data describing the content package as a whole
- Organizations: contains the content structure or organization of the learning resources making up a stand-alone unit or units of instruction.
- Resources: defines the learning resources bundled in the content package
- (sub)Manifest(s): describes any logically nested units of instruction (which can be treated as stand-alone units)

3.3.1. Meta-data

Meta-data is defined as data about data. The meta-data depicted in Figure 3.3a is used to describe the content package (i.e., Content Aggregation) as a whole. This meta-data enables the search and discoverability of the content package itself. It also enables a mechanism for describing the characteristics of the content package.

<u>ADL Note:</u> Meta-data can also be used at various locations within the manifest to describe the different aspects of the content package(Refer to Section 4.5.1: *Associating Meta-data with SCORM Components* for more information).

3.3.2. Organizations

The Organizations component is used to describe how the content is organized in the content package. It may contain one or more Organization components, each of which describes a particular structure for the content of the package. The current version of the IMS Content Packaging Specification only defines one form of content organization,

which is in the shape of a tree or hierarchy. Neither the IMS Content Packaging Specification, nor SCORM, specifies whether this hierarchy should represent a particular learning taxonomy or nomenclature. In other words, SCORM does not specify terms such as "module", "lesson" and so on to describe the levels of hierarchy in a content organization. Such terms tend to be resolved in a particular way. Therefore, the choice of nomenclature is left to the content developer.

3.3.2.1. Multiple Content Organizations

The IMS Content Packaging Specification separates learning resources from the way those resources are organized, allowing for one or more uses of the same learning resources within different contexts or uses.

In order to deliver the content package to a learner in an LMS, there must be at least one content organization. In some cases, it is useful to define different ways to use the content in a package. Each of these ways is represented in a different content organization. Even if there are several content organizations, there is always a designated organization to use by default when the entity that uses the package cannot decide which of the content organizations to use.

3.3.2.2. Content Organization

The content organization describes how the content of the content package is organized for use. In SCORM 1.2, the only defined use for a content organization was as a kind of table of contents for the resources in the content package. In this version of SCORM, the content organization is also used as a way to describe a hierarchy of learning activities that exploit the learning resources. These resources are described in another part of the manifest.

The content organization should not be confused with the physical structure of the content package, or with the structure of the manifest itself. For example, the files in a content package are often organized in a hierarchy of folders, but that structure in itself cannot tell the user of a content package how to use the content of the package.

The purpose of the content organization is to provide the content developer with the means to specify cohesive units of instruction that use collections of learning resources. Such a unit of instruction is a hierarchy of learning activities, for which specific behaviors and rules may be prescribed in such a way that this activity structure and the associated behaviors can be reproduced in any SCORM-conformant LMS environment.

For any activity defined in a content organization, the content developer may or may not defined specific behaviors and rules. In the absence of specific rules, the content organization is just a map that can be used to navigate at will through the learning resources defined in the content package. By adding specific rules and behaviors, the content organization becomes a guide that prescribes how an LMS must manage the learner's experience and use of the learning resources.

A content organization can be seen as a structured map of learning resources, or a structured activity map to guide the learner through a hierarchy of learning activities that use the learning resources. One content developer may choose to structure the content organization as a table of contents for the learning resources, while another content developer may choose to structure the content organization as an adaptive guided path through a learning experience, invoking learning resources only if and when they are needed. A third content developer may create a content organization where some discovery activities include a free form use of some of the learning resources, while other activities are more formally managed.

An LMS may create its own internal representation for a content package and its contents. The specification of a content organization in SCORM does not imply that LMS systems are required to adopt the content organization model or to store the package components using the same structural organization.

The Organizations component defined in the IMS Content Packaging Specification provides the framework for the information that is required to represent the content structure. By design, the Organization component also contains the ability to add, for every item in the organization, additional information such as meta-data or behavior rules and prescriptions. SCORM refers to such an Organizations component, and to what it can represent as the "Content Organization."

The Content Organization is not an inventory of the actual learning resources, and it does not describe those resources. The IMS Content Packaging model also provides a clean way to inventory and bundle all of the physical files required to deliver the learning resources, as well as to identify relationships between files that belong to one or more learning resources, including externally referenced resources that are not contained as physical files within a package.

3.3.2.2.1. Authoring Content and Content Collections

Content organizations provide the means to represent the structure of collections of learning resources. This is a relatively new approach to designing learning content. In the past, CBT authoring tools provided the means to create parts of a course as well as how and when those parts were to be presented to the learner. The learning resources and the content organization were usually inseparable, and developed using the same tools and proprietary data formats. The shift to Internet-based technologies and the notion of building reusable content objects changed the authoring process considerably.

Within SCORM, it is the LMS that is responsible for delivering the content according to the prescriptions embodied in the content organization. That means that the LMS must know how and when a designer intended the learning resources included in a content package to be presented to the learner. The content organization, which is located in the organizations section of the package manifest, allows the designer to provide the LMS with this information. This means that authoring a unit of instruction consists of authoring or collecting learning resources, and also authoring a content organization that uses those learning resources. – perhaps using completely different authoring tools.

In SCORM, there are two distinct products of authoring: Authored content organization information, which is used as a prescription by the LMS and processed during run-time, and authored learning resources, which are launched in a browser environment as prescribed by the content organization. Unlike many older CBT models, here the structure is separate from the content. The structure is now fully exposed and can be represented in a standardized form. Content packages can now be delivered in a predictable way, to produce comparable learning experiences in different LMS environments.

3.3.2.3. Representing Content Structure

A SCORM content organization includes components that are intended to define different aspects of a content structure.:

- Content Hierarchy: This is a tree-shaped representation, much like a table of contents, that represents a logical organization for the learning resources or activities that use the learning resources. In many cases, but not all, this hierarchical tree can be traversed in a specific order that represents the default order in which an author intends for the learner to progress through the material.
- **Meta-data:** This is optional, *context-specific* descriptive data about an activity defined in the content organization. Such meta-data can be used to describe how a particular the learning resource is to be used in a particular content organization (e.g., competency or objectives that may be met by a learner when the learning resource is used in a particular activity).
- Sequencing, Adaptive Sequencing and Navigation: Optional prescriptions may be embedded in the content organization if the content developer wants to control which learning resources is to be presented to the learner as the learner navigates through the content. By default, if no sequencing and navigation prescription is defined, a learner may choose any content item at will. Adding specific prescriptions can alter this default behavior. For example, adding a flow prescription to the items in the content organization will direct the LMS to guide the navigation in the order defined y the organization tree. More complex adaptive sequencing can be based on the completion status of certain learning resources or on more complex computation of user preferences or assessment results.

Content Organizations are intended to represent a wide variety of approaches to the aggregation of content. A content organization can represent a content aggregation ranging from very, very small learning resources – as simple as a few lines of Hypertext Markup Language (HTML) or a short media clip – to highly interactive learning resources that are tracked by an LMS. The SCORM Content Aggregation Model is neutral about the complexity of content, the number of hierarchical levels of a particular unit of instruction (i.e., taxonomy) and the instructional methodology employed.

Table 3.3.2.2a depicts examples of several possible curricular taxonomy models as used by American and Canadian Armed Forces, which can be represented in a SCORM content organization.

US Army	US Air Force	US Marine Corps	Canadian Armed Forces
Course	Course	Course	Course
Module	Block	Phase	Performance Objective
Lesson	Module	SubCourse (Annex)	Enabling Objective
Learning Objective	Lesson	Lesson	Teaching Point
Learning Step	Learning Objective	Task	
		Learning Objective	
		Learning Step	

Table 3.3.2.2a: Example of Curricular Taxonomy Models

3.3.2.3.1. Content Hierarchy

A collection of learning resources can usually be organized into a hierarchy, which can be represented as a content organization. Another approach to organizing learning resources is to define a hierarchy of activities that rely on the resources to provide a specific learning experience. In this case the top-level of the hierarchy is the main activity, which can consist of sub-activities, which can themselves consist of sub-activities. Depending on the design methodology, this hierarchical grouping might be used to represent concepts like Course, Chapter, Topic or similar terms that represent how the content is organized for delivery to a learner.

The IMS Content Packaging Specification defines a set of terms that are used in representing the content hierarchy. Figure 3.3.2.2.1a depicts how a content organization forms a hierarchical structure that maps to a collection of learning resources (as defined by the IMS Content Packaging Specification). The hierarchical structure is a tree of nested Item elements. The root of the tree is the Organization element. An Item element may reference a Resource element, which describes a specific learning resource to be launched when the Item is used as an activity. The same Resource element may be referenced by more than one Item element.

SCORM and the IMS Simple Sequencing Specification [5] are application profiles of the IMS Content Packaging Specification, and as such they add a couple of restrictions. One is that only leaf Items (Items that do not have children) may reference a learning resource. Another is that an Organization must contain at least one Item.

In addition, SCORM requires that a learning resource be of one of two types. Either a SCO or an Asset. These will be described in more details in the section on Resources.

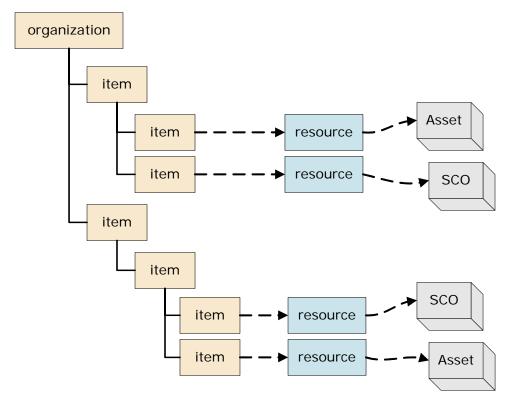


Figure 3.3.2.3.1a: IMS Content Hierarchy Terminology

3.3.2.3.2. Meta-data

When a learning resource is created with the intent to make it reusable, it is a best practice to describe the learning resource with meta-data. Meta-data allow the learning resource to be found when it is stored in a content package or in a repository. It also makes the learning resource more reusable since one can, by inspecting only the meta-data, decide to reuse it without having to actually open and inspect the resource itself. Such meta-data is considered *context-independent*, since it describes the learning resource regardless of where it can be found, independently of any particular use in the context of a specific learning strategy. For example, imagine a simple SCO that teaches how to thread a needle. Meta-data describing the SCO might describe the skill to be acquired – inserting a thread through the eye of a needle – and might further describe that a simulation is part of the learning experience. This meta-data does not, however, describe how the needle might be used. When the use of a learning resource is defined as part of a learning strategy, additional meta-data may be used to describe the activity that uses the resource.

Meta-data that is specific to a particular learning strategy is called *context-specific* meta-data and is incorporated in the content organization. For example, the meta-data may include an explanation of why that particular activity is inserted at that particular place in an instructional sequence.

Context-independent meta-data usually refers to immutable meta-data that describes digital assets, content objects or collections of objects. Context-dependent meta-data, on

the other hand, usually refers to meta-data that makes sense only in the context of a particular content organization.

Developing and applying meta-data to learning resources and collections of learning resources is a new concept to many. Best practices for doing this have yet to be developed. In some cases, the principal purpose for meta-data is discovery and reuse of content. In other cases, it is strictly informational and provides authors with information about the design and intent of the described learning object or item in a content organization. Some have theorized that meta-data could be provided to learners to help them navigate through content. No consensus on common usage of meta-data has so far emerged, but provisions have been made in these specifications for a variety of potentially valuable uses of meta-data.

If a content package is intended only for delivery to learners, and there is no intent to ever reorganize it or disaggregate it to reuse its components in another organization, adding detailed meta-data for each element in the content package may be counter-productive, since such meta-data only makes the content package and its manifest more expensive to store, transmit and manage. On the other hand, if there is any chance that the content package may have to be modified, reorganized or disaggregated for reuse at some time in the future, then it makes sense to provide meta-data for every element that might be reused or need to be interpreted. In case of doubt, past experience wit content seems to indicate that it is probably best to add meta-data, even though they may be stripped when a streamline delivery package is required.

3.3.2.3.3. Sequencing, Adaptive Sequencing and Navigation

Sequencing and Navigation refers to the rules that an LMS must follow in order to present a specific learning experience as intended by an author or content developer. This learning experience may be free play, in which the learner can choose any item in the content organization in any order, or it may be guided by a flow through the structure of the content organization. The learning experience can be adaptive, with different behaviors that depend on the learner's performance or other variables that can be tracked by the LMS.

SCORM defines a default set of rules that govern sequencing and navigation for a specific content organization. However, the default rules only provide for free play. Many content developers and instructional designers prefer to use specific learning or instructional strategies. In those cases, the content developer can define specific rules that prescribe how an LMS will manage the learning experience.

These rules are associated with the elements in the content organization tree and each of these elements represents an activity that the learner may engage in under control of the sequencing rules. Application of sequencing rules typically results in either the launching of a learning resource, or a choice the learner must make within the constrains defined by the content developer. Because the sequencing and navigation rules are part of the content organization, which is itself part of the package manifest, the intended behaviors can be embedded in a content package in such a form that the package can be used to deliver the same learning experience on any SCORM-conformant LMS.

SCORM Sequencing and Navigation provides, among other things, the ability to define highly adaptive activity sequencing. For example, it allows for conditional branching to another activity depending on whether the learner has completed some task, attained an acceptable score or achieved a certain objective. Sequencing and Navigation information embedded in a content organization can prescribe whether and how an LMS may allow the learner to use learning resources in the content package, based on how other learning resources of the same package have been used in past activities.

In the past, CBT authoring tools typically provided custom sequencing and navigation features that were encoded in proprietary data formats. However, new requirements emerged, such as the ability to publish and deploy browser-based content through different LMS systems. Another requirement was to be able to separate structure and instructional strategy logic from the learning resource used in implementing the strategy. This led to the need to standardize some means to define and encode adaptive sequencing and navigation behaviors, so that content organizations can be moved, used and reused across different LMS environments.

The standardization process for sequencing and navigation has proved difficult due to the variety of complex design approaches required in order to effectively train certain tasks or prepare learners for complex roles/responsibilities. Past versions of SCORM provided no specific sequencing capabilities, effectively allowing only pure free play, because it is a difficult and complex subject that required more time to come up with workable solutions. There are many, and often divergent, requirements in the learning design community. No approach has been found to solve everyone's use case. However, the approach used in SCORM, which is based on the IMS SS Specification [5], is flexible enough to allow a wide variety of learning and instructional design approaches.

Section 5: SCORM Sequencing and Navigation describes how the sequencing and navigation rules are embedded into the XML representation of content organizations in a package manifest, in compliance with the IMS SS Specification and SCORM. This specification enables robust sequencing and navigation information to be associated with content packages extending the content organization schema with sequencing prescriptions. These prescriptions are based on a common model for expressing rules, events and conditions as well as run-time behaviors associated with various sequencing and navigation methods.

The IMS SS Specification enables systems to deliver learning resources in a predictable manner, while reacting consistently to learners' interactions with learning resources. The intended approach fosters reusability of learning resources by allowing content developers to define sequencing and navigation behavior or instructional strategies independently of the actual learning resources. The adaptive sequencing information is encoded in the content organization, allowing learning resources to be reused in multiple contexts (i.e. multiple different manifests or organizations, each having their own set of sequencing and navigation information).

3.3.3. Resources

The resources component of a manifest can describe external resources, as well as the physical files located in the package. These files may be media files, text files, assessment objects or other pieces of data in electronic form. Conceptual groupings and relationships between files can be represented within the resources component. The combination of resources is generally categorized as "content." The resources are referred to at various points within the organizations component, which provides the structure for the resources.

In Figure 3.3.3a, a single Resource is made up of multiple components. In SCORM, these components are simple assets. If the Resource was built to communicate with an LMS (See SCORM Run-Time Environment book [2]) then the Resource is a SCO. If the Resource was not built to communicate with an LMS the Resource is considered an Asset. The collection of Resource components makes up the Resources that an Organization can refer to. This collection of Resources and the Organization defines the Content Organization.

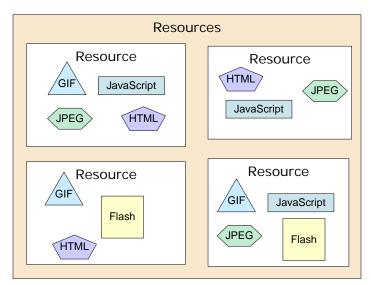


Figure 3.3.3a: Manifest Resources

The Resource describes the physical makeup (inventory of components) of the resource as a whole. The components of the resource are listed as Files within the Resource.

3.3.4. Physical Files

The physical files component represents the actual files referenced in the resources component. These files may be local files that are actually contained within the content package, or they can be external files that are referenced by a Universal Resource Indicator (URI).

3.4. Building Content Packages

This section presents the requirements for building SCORM Content Packages. The section describes the XML binding for the IMS Content Packaging Specification as applied to SCORM. There are some specific rules that have guided the creation of this XML binding:

- The XML binding will adhere to the XML 1.0 specification [6] of the W3C; and
- The XML binding must maintain the definitional structure of the IMS Content Packaging Information Model.

Some of the requirements are also drawn from other various specifications and standards. The majority of the requirements are inherited by the requirements defined in IMS Content Packaging Specification. Some other specifications and standards are implicitly inherited based on the nature of the XML and other Internet technologies.

This section also defines the requirements for each of the SCORM Content Package Application Profiles:

- Resource Package Application Profile: A content package for bundling a set of learning resources with no defined organization of the learning resources (SCOs and Assets). These learning resources do not have to have any relationship between them.
- Content Aggregation Package Application Profile: A content package for bundling a set of learning resources and their intended static structure and sequencing requirements (i.e., the manifest contains 1 or more organizations of the learning resources).

Refer to Section 3.5: *The SCORM Content Package Application Profiles* for more information on SCORM Content Package Application Profiles.

3.4.1. Manifest File

The following section defines the requirements for building an imsmanifest.xml file. The manifest is a structured inventory of the content of the package. If the package is intended for delivery to an end user, then the manifest also contains information about how the content is organized. The imsmanifest.xml is, as the name implies, an XML file. This section defines the requirements for each element defined by the IMS Content Packaging Specification.

Some elements use the term smallest permitted maximum (SPM) in describing the multiplicity and/or data types. The SPM indicates that applications that process content packages shall process at least that number of elements or number of characters, but are free to support and exceed the limit.

The data types and the formats for the elements are defined by the data types prescribed by the XML Schema Part 2: Datatypes W3C Recommendation [13]. The ordering of the XML elements is as defined by the IMS Content Packaging XML Binding for the manifest.

The following table is used to describe the SCORM Content Packaging Application Profile (refer to Section 3.5 for more details) requirements:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	<requirement></requirement>
Resource	<requirement></requirement>

Table 3.4.1a: SCORM Content Packaging Application Profile Table Format

The left-hand column is titled *SCORM Content Packaging Application Profile*. This column describes the types of application profiles defined by SCORM. The right-hand column is titled *Manifest Multiplicity Requirements*. This column defines the multiplicity requirement for the XML elements in the imsmanifest.xml file.

Multiplicity	Explanation
Requirement	
1 and only 1	The element must exist 1 and only 1 time within the parent
	element
0 or More	The element can exist 0 or More times within the parent
	element.
1 or More	The element must exist 1 or More times within the parent
	element.
0	The element is not permitted.
0 or 1	The element can exist 0 or 1 time within the parent element.

Table 3.4.1b: Explanation of Multiplicity Requirements

Table 3.4.1b defines the types of multiplicities that are used in this section. Each type is accompanied by a brief explanation.

3.4.1.1. <manifest> Element

The <manifest> element represents a reusable unit of instruction that encapsulates metadata, organizations and resource references [3]. The <manifest> element is the root element node in the imsmanifest.xml file. Subsequent occurrences of the <manifest> elements inside the root <manifest> are used to compartmentalize files, meta-data and organization structure for aggregation, disaggregation and reuse. These child <manifest> elements are referred to as (sub)manifests. (Sub)Manifests are described in more detail in Section 3.4.2: (Sub)Manifests.

All namespace declarations should be declared inside the <manifest> element. This includes any namespaces that are considered extensions to IMS and ADL. Although this is not considered a requirement, based on the XML specifications, ADL considers this to be a "best practice" and urges vendors and tools to provide this information.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <manifest>

SCORM Requirements: The manifest element is the root element node for an IMS Manifest. The root <manifest> element shall exist 1 and only 1 time.

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	1 and only 1
Resource	1 and only 1

Data Type: The <manifest> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <manifest> element contains the following elements/attributes:.

Attributes:

- identifier (mandatory) The attribute identifies the manifest. The identifier is unique within the Manifest [3]. The identifier attribute is typically provided by an author or authoring tool during the development of the manifest. XML Data Type: xs:ID.
- version (optional) The version attribute identifies the version of the Manifest [3]. It is used to distinguish between manifests with the same identifier. The value has an SPM of 20 characters. XML Data Type: xs:string.
- xml:base (optional) The xml:base attribute provides a relative path offset for the content file(s) contained in the manifest [3]. The usage of this element is defined in the XML Base [7] specification developed by the World Wide Web Consortium (W3C). The value has an SPM of 2000 characters. XML Data Type: xs:anyURI.

Elements:

- <metadata>
- <organizations>
- <resources>
- <manifest>
- <imsss:sequencingCollection>

Example:

Code Illustration 3-1

3.4.1.2. <metadata> Element

The <metadata> element contains meta-data describing the manifest [3]. It contains relevant information that describes the content package (i.e., Content Aggregation) as a whole. The <metadata> element is considered the root node for meta-data defined in a content package. This means that all meta-data for a content package is defined as a child of the <metadata> element.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <metadata>

SCORM Requirements: SCORM places a requirement that all <manifest> elements shall contain the following multiplicity requirements for the <metadata> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	1 and only 1
Resource	1 and only 1

Data Type: The <metadata> element is a parent element. Parent elements have no values associated with them. Parent element acts as "containers" for other elements/attributes. The <metadata> element contains the following elements/attributes:

Attributes:

• None

Elements:

• <schema>

- <schemaversion>
- {Meta-data}

Example:

Code Illustration 3-2

3.4.1.3. <schema> Element

The <schema> element describes the schema that defines and controls the Manifest [3]. Since this element is a child of the meta-data describing the package, the element is used to describe the schema that controls the requirements of the manifest.

XML Namespace: http://www.imsglobal.org/xsd/imscp_vlp1

XML Namespace Prefix: imscp

XML Binding Representation: <schema>

SCORM Requirements: SCORM places a requirement that the <schema> element shall adhere to the following multiplicity requirements:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	1 and only 1
Resource	1 and only 1

Data Type: The <schema> element is represented as a characterstring. XML Data Type: xs:string.

SCORM requires that the <schema> element contain the following restricted vocabulary token:

• ADL SCORM: This restricted token indicates that the Content Package is built in accordance with the requirements defined by SCORM.

Example:

Code Illustration 3-3

3.4.1.4. <schemaversion> Element

The <schemaversion> element describes the version of the above schema (<schema>) [3].

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <schemaversion>

SCORM Requirements: SCORM places a requirement that the <schemaversion> element shall adhere to the following multiplicity requirements:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	1 and only 1
Resource	1 and only 1

Data Type: The <schemaversion> element is represented as a characterstring. XML Data Type: xs:string.

SCORM requires that the <schemaversion> element contain the following restricted vocabulary token:

• CAM 1.3: This restricted token indicates that the Content Package is built in accordance with SCORM Content Aggregation Model Version 1.3.

Example:

```
<manifest>
  <metadata>
    <schema>ADL SCORM</schema>
    <schemaversion>CAM 1.3</schemaversion>
    </metadata>
</manifest>
```

Code Illustration 3-4

3.4.1.5. {Meta-data}

Meta-data can be inserted into a manifest using an appropriate meta-data scheme [3]. If using meta-data to describe SCORM Content Model Components, ADL highly recommends, at a minimum, the use of the IEEE LOM meta-data scheme. Organizations may use various other meta-data schemes if necessary (e.g., Dublin Core). This meta-data describes the package as a whole (Content Aggregation meta-data). There are several mechanisms for inserting meta-data in a manifest. Meta-data can be inserted into a manifest by extensions to the XML (inline meta-data). ADL also provides a namespaced element (Refer to Section 3.4.1.5.2: < location> Element) to permit a reference to a stand-alone XML file. The {Meta-data}, found as a child of the <manifest>, is optional (can appear 0 or More times using one of the mechanisms described). The example below illustrates the use of inline XML extensions of the LOM elements

3.4.1.5.1. Meta-data using XML extensions

By definition, XML can be extended by introducing elements and attributes from other defined namespaces. Meta-data can be inserted into the IMS Content Package manifest by using this type of XML extension mechanism. There are several ways to add extension elements into an XML document:

1. Defining a namespace in an XML element with a specific prefix. In this method, the specific namespace must be defined using the xmlns:cprefix> syntax in the element. Typically, these prefixes are defined in the root node of an XML element. However, this is not a requirement. The prefix and namespace can be defined in any element, as long as the extended elements are not used prior to the declaration of the namespace (refer to *Code Illustration 3-5* for an example)

Example:

Code Illustration 3-5

2. Defining a namespace in an XML element without a prefix. In this method, the namespace is defined at the point of use. By using this method, the syntax is stating that the element is from a particular namespace and every child element of this element is also from the namespace (refer to *Code Illustration 3-6* for an example).

Example:

Code Illustration 3-6

3.4.1.5.2. < location > Element

The <location> element provides a means to describe the location where the meta-data describing the SCORM Content Model component may be found. This may be a URI. This is an ADL namespaced element extension to the IMS Content Packaging Specification. The meta-data creator has two options for expressing meta-data in a Content Package. The creator can either use the <location> element to express the location of the meta-data record or place the meta-data inline within the Manifest file, as described previously. This value is affected by the use of xml:base values. Refer to Section 3.4.4.1: *Handling the XML Base Attribute* for more information on xml:base usage requirements and guidance.

XML Namespace: http://www.adlnet.org/xsd/adlcp_v1p3

XML Namespace Prefix: adlcp

XML Binding Representation: <location>

SCORM Requirements: SCORM places a requirement that the <adlcp:location> element shall adhere to the following multiplicity requirements:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or More
Resource	0 or More

Data Type: The <adlcp:location> element is represented as a characterstring. The characterstring has an SPM of 2000 characters. XML Data Type: xs:string.

Attributes:

None

Elements:

• None

Example:

Code Illustration 3-7

3.4.1.6. <organizations> Element

The <organizations> element describes one or more structures or organizations for the content package [3].

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <organizations>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <organizations> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	1 and only 1
Resource	1 and only 1

SCORM places a requirement that when building a SCORM Resource Content Package, this element is required to be represented in the manifest as an empty element (i.e., <organizations/>). When building a SCORM Content Aggregation Package, this element is required to contain at least one <organization> sub-element.

Data Type: The corganizations element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The corganizations element contains the following elements/attributes:

Attributes:

• default (mandatory – for a Content Aggregation Content Package) – The default attribute identifies the default organization to use. The value of this element must reference an identifier attribute of an <organization> element or an identifier attribute of a <manifest> element. XML Data Type: xs:IDREF.

Elements:

<organization>

Example:

Code Illustration 3-8

3.4.1.7. <organization> Element

The content organization> element describes a particular hierarchical organization [3]. The
content organization is defined by the corganization> element. The content
organization is a conceptual term. The content organization can be a lesson, module,
course, chapter, etc. What a content organization defines is dependent on an
organizations curricular taxonomy. The corganization> element represents an Activity
in the terms of IMS SS.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <organization>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <organization> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	1 or More
Resource	0

For SCORM Resource Content Packages, this element shall not appear. The <organizations> element (its parent) is required to be empty.

Data Type: The corganization element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The corganization element contains the following elements/attributes:

Attributes:

- identifier (mandatory) An identifier for the organization that is unique within the manifest file [3]. Typically this value is provided by an author or authoring tool. XML Data Type: xs:ID
- structure (optional) Describes the shape of the organization [3]. The default value of the structure attribute, if not provided, shall be hierarchical. The value has an SPM of 200 characters. XML Data Type: xs:string
- adlseq:objectivesGlobalToSystem (optional, default = true) This attribute indicates that any mapped global shared objectives defined in sequencing information (Refer to Section 5.1.1: <sequencing> Element) are either global to the learner and the content organization (false) or global for the lifetime of the learner within the LMS (true) across all content organizations. XML Data Type: xs:boolean.

Elements:

- <title>
- <item>

- <metadata>
- <imsss:sequencing>

Example:

Code Illustration 3-9

3.4.1.8. <title> Element

The <title> element describes the title of the organization [3]. This element could be used to help a learner decide which organization to choose. Depending on what the organization is describing, this title could be for a course, module, lesson, etc.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <title>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <title> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	1 and only 1
Resource	0

For SCORM Resource Content Packages, this element shall not appear. The <organizations> element is required to be empty.

Data Type: The <title> element is represented as a characterstring element. The characterstring has an SPM of 200 characters. XML Data Type: xs:string

Example:

```
<organization identifier="TOC1">
    <title>Introduction to the SCORM</title>
</organization>
```

Code Illustration 3-10

3.4.1.9. <item> Element

The <item> element is a node that describes the hierarchical structure of the organization [3]. The <item> element represents an Activity in the content organization. The <item> element describes a node within the organization's structure. The <item> element can be nested and repeated within other <item> elements to any number of levels. This structuring of <item> elements shapes the content organization and describes the relationships between parts of the learning content.

The <item> element can act as a container of other <item> elements or as a leaf node. If an <item> is a leaf node, then the <item> shall reference a <resource> element. If an <item> element is a parent element, the <item> itself is not permitted to reference a <resource> element (only leaf <item> elements are permitted to reference resources).

XML Namespace: http://www.imsglobal.org/xsd/imscp_vlp1

XML Namespace Prefix: imscp

XML Binding Representation: <item>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <item> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or More
Resource	0

For SCORM Resource Content Packages, this element shall not appear. The <organizations> element is required to be empty.

Data Type: The <item> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <item> element contains the following elements/attributes:

Attributes:

- identifier (mandatory) An identifier attribute is an identifier, for the item, that is unique within the Manifest. XML Data Type: xs:ID.
- identifierref (optional) The identifierref attribute is a reference to an identifier in the resources section or a (sub)manifest [3]. The identifierref is permitted to reference an identifier of a <resource> (within the same manifest), an identifier of a <resource> (within a (sub)manifest that is in scope of the containing manifest) or an identifier of a (sub)manifest. The (sub)manifest is used to resolve the ultimate location of the file. If no identifierref is supplied, it is assumed that there is no content associated with this entry in the organization. The value has an SPM of 2000 characters. XML Data Type: xs:string.
- isvisible (optional) The isvisible attribute indicates whether or not this item is displayed when the structure of the package is displayed or rendered. If

- not present, value is defaulted to be true [3]. The value only affects the item for which it is defined and not the children of the item or a resource associated with an item. XML Data Type: xs:boolean
- parameters (optional) The parameters attribute contains the static parameters to be passed to the resource at launch time. The parameters attribute should only be used for <item> elements that reference <resource> elements. The value has an SPM of 1000 characters. XML Data Type: xs:string.

Elements:

- <title>
- <item>
- <metadata>
- <adlcp:timeLimitAction>
- <adlcp:dataFromLMS>
- <imsss:sequencing>
- <adlnav:presentation>

Example:

Code Illustration 3-11

3.4.1.10. <title> Element

The <title> element describes the title of the item [3].

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <title>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <title> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	1 and only 1
Resource	0

For SCORM Resource Content Packages, this element shall not appear. The <organizations> element is required to be empty. Consequently, no <item> or <title> will be provided.

Data Type: The <title> element is represented as a characterstring element. The characterstring has an SPM of 200 characters. XML Data Type: xs:string

Example:

Code Illustration 3-12

3.4.1.11. <item> Element

The <item> element can be nested an arbitrarily number of levels. This is typically based on the content structure of the aggregation. Refer to Section 3.4.1.9 for more details on the <item> element.

3.4.1.12. <metadata> Element

The <metadata> element contains meta-data describing the item [3]. SCORM defines the meta-data that is used to describe the <item> as Activity Meta-data. Refer to Section 4.5.1.3: Activity Meta-data for the SCORM Activity Meta-data Application Profile requirements. The <metadata> element is considered the root node for meta-data describing the activity. This means that all meta-data for the activity is defined as a child of the <metadata> element.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <metadata>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <metadata> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or 1
Resource	0

For SCORM Resource Content Packages, this element shall not appear. The <organizations> element is required to be empty.

Data Type: The <metadata> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <metadata> element contains the following elements/attributes:

Attributes:

None

Elements:

• {Meta-data} – Refer to Section 3.4.1.5: {*Meta-data*} for information on the inclusion of meta-data.

ADL Note: This is different from the <metadata> element defined in Section 3.4.1.2: <metadata> Element. The IMS Content Packaging Specification only permits the <schema> and <schemaversion> elements on the <metadata> element defined as a child of the <manifest> element.

Example:

```
<organization>
  <item>
    <title>
    <metadata>
        <adlcp:location>lesson1/lesson1MD.xml</adlcp:location>
        </metadata>
        </item>
    </organization>
```

Code Illustration 3-13

3.4.1.13. <timeLimitAction> Element

The <timeLimitAction> element defines the action that should be taken when the maximum time allowed in the current attempt of the activity is exceeded. All time tracking and time limit actions are controlled by the SCO.

This element is an ADL defined extension to the IMS Content Packaging Specification. The element shall only appear, if needed, as a child of a leaf <item> element that references a SCO. Only those <item> elements that reference a SCO resource can contain the <timeLimitAction> element.

The LMS shall use the value of the <timeLimitAction> element, if provided, to initialize the cmi.time_limit_action data model element (Refer to SCORM Run-Time Environment book [2]). If the content developer defines a time limit action, then the SCO is responsible for all behaviors based on the time out (if the time out occurs).

XML Namespace: http://www.adlnet.org/xsd/adlcp v1p3

XML Namespace Prefix: adlcp

XML Binding Representation: <timeLimitAction>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <timeLimitAction> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or 1
Resource	0

For SCORM Resource Content Packages, this element shall not appear. The <organizations> element is required to be empty.

Data Type: The <timeLimitAction> element is represented as a characterstring. The characterstring is required to be one of following set of restricted characterstring tokens:

- exit, message: The learner is should be forced to exit the SCO. The SCO should provide a message to the learner indicating that the maximum time allowed for the learner attempt was exceeded.
- exit, no message: The learner should be forced to exit the SCO with no message.
- continue, message: The learner should be allowed to continue in the SCO. The SCO should provide a message to the learner indicating that the maximum time allowed for the learner attempt was exceeded.
- continue, no message: Although the learner has exceeded the maximum time allowed for the learner attempt, the learner should be given no message and should not be forced to exit the SCO.

If this feature is used within the SCO, the SCO shall keep track of the time affecting this timeout period and provide the informative message indicating the timeout (if appropriate).

Example:

```
<organization>
  <item identifier="ITEM3" identifierref="RESOURCE3" isvisible="true">
        <title>Content 1</title>
        <adlcp:timeLimitAction>exit,no message</adlcp:timeLimitAction>
        </item>
</organization>
```

Code Illustration 3-14

3.4.1.14. <dataFromLMS> Element

The <dataFromLMS> element provides initialization data expected by the resource (i.e., SCO) represented by the <item> after launch. This data is opaque to the LMS and only has functional meaning to the SCO. This element shall not be used for parameters that the SCO may need during the launch (query string parameters). If this type of functionality is required, then the developer should use the parameters attribute of the item referencing the SCO resource.

This element is an ADL defined extension to the IMS Content Packaging Specification. The element shall only appear, if needed, as a child of a leaf <item> element. Only those <item> elements that reference a SCO resource can contain the <dataFromLMS> element).

The LMS shall use the value of the <dataFromLMS> element, if provided, to initialize the cmi.launch data data model element (See SCORM Run-Time Environment book [2]).

XML Namespace: http://www.adlnet.org/xsd/adlcp_v1p3

XML Namespace Prefix: adlcp

XML Binding Representation: <dataFromLMS>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <dataFromLMS> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or 1
Resource	0

For SCORM Resource Content Packages, this element shall not appear. The <organizations> element is required to be empty.

Data Type: The <dataFromLMS> element is represented as a characterstring element. The characterstring has an SPM of 4096 characters.

Example:

Code Illustration 3-15

3.4.1.15. <sequencing> Element

Refer to Section 5.1.1: *<sequencing> Element.*

Refer to Section 5.2.1.1: *presentation> Element*.

3.4.1.17. <metadata> Element

The <metadata> element is meta-data describing the organization [3]. SCORM defines the meta-data that is used to describe the <organization> as Content Organization Meta-data. Refer to Section 4.5.1.2: Content Organization Meta-data for the SCORM Content Organization Meta-data Application Profile requirements. The <metadata> element is considered the root node for meta-data describing the content organization. This means that all meta-data for the content organization is defined as a child of the <metadata> element.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <metadata>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for this <metadata> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or 1
Resource	0

For SCORM Resource Content Packages, this element shall not appear. The <organizations> element is required to be empty.

Data Type: The <metadata> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <metadata> element contains the following elements/attributes:

Attributes:

None

Elements:

• {Meta-data} – Refer to Section 3.4.1.5: {*Meta-data*} for information on the inclusion of meta-data.

<u>ADL Note:</u> This is different from the <metadata> element defined in Section 3.4.1.2: <metadata> Element. The IMS Content Packaging Specification only permits the <schema> and <schemaversion> elements on the <metadata> element defined as a child of the <manifest> element.

Example:

Code Illustration 3-16

3.4.1.18. <sequencing> Element

Refer to Section 5.1.1: *<sequencing> Element*.

3.4.1.19. <resources> Element

The <resources> element is a collection of references to resources. There is no assumption of order or hierarchy of the individual <resource> elements that the <resources> element contains [3].

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <resources>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <resources> element:

SCORM Content Packaging	Manifest Multiplicity
Application Profile	Requirements
Content Aggregation	1 and only 1
Resource	1 and only 1

Data Type: The resources> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The resources> element contains the following elements/attributes:

Attributes:

• xml:base (optional) – The xml:base attribute provides a relative path offset for the content file(s) [3]. The usage of this element is defined in the XML Base [7] Working Draft from the W3C. The value has an SPM of 2000 characters. XML Data Type: xs:anyURI

Elements:

• <resource>

Example:

```
<manifest>
  <metadata/>
  <organizations/>
   <resources>
     <resource identifier="RESOURCE1" type="webcontent" href="lesson1.htm">
         <file href="lesson1.htm"/>
      <resource identifier="RESOURCE2" type="webcontent" href="intro1.htm">
        <file href="introl.htm"/>
     </resource>
      <resource identifier="RESOURCE3" type="webcontent" href="content1.htm">
        <file href="content1.htm"/>
     </resource>
      <resource identifier="RESOURCE4" type="webcontent" href="summary1.htm">
        <file href="summary1.htm"/>
       </resource>
  </resources>
</manifest>
```

Code Illustration 3-17

3.4.1.20. <resource> Element

The <resource> element is a reference to a resource [3]. There are two primary types of resources defined within SCORM:

• SCOs

Assets

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <resource>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <resource> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or More
Resource	0 or More

A leaf <item> element is required to reference a resource (SCO resource or Asset resource). If an <item> references a resource, this resource is subject to being identified for delivery and launch to the learner. If an <item> references a <resource> the resource shall meet the following requirements:

- The type attribute shall be set to webcontent
- The adlcp:scormType shall be set to sco or asset
- The href attribute shall be required.

Data Type: The resource> element is a parent element. Parent elements have no
values associated with them. Parent elements act as "containers" for other
elements/attributes. The resource> element contains the following elements/attributes:

Attributes:

- identifier (mandatory) The identifier attribute represents an identifier, of the resource, that is unique within the scope of its containing manifest file [3]. This identifier is typically provided by an author or authoring tool. XML Data Type: xs:ID.
- type (mandatory) The type attribute indicates the type of resource [3]. The value has an SPM of 1000 characters. XML Data Type: xs:string
- href (optional) The href attribute is a reference a Uniform Resource Locator (URL) [3]. The href attribute represents the "entry point" or "launching point" of this resource. External fully qualified URLs are also permitted. This value is affected by the use of xml:base values. Refer to Section 3.4.4.1: *Handling the XML Base Attribute* for more information on xml:base usage requirements and guidance. The value has an SPM of 2000 characters. XML Data Type: xs:string.
- xml:base (optional) The xml:base attribute provides a relative path offset for the files contained in the manifest. The usage of this element is defined in the XML Base Working Draft from the W3C. The value has an SPM of 2000 characters. XML Data Type: xs:anyURI.

- adlcp:scormType (mandatory) The adlcp:scormType attribute defines the type of SCORM resource. This is an ADL extension to the IMS Content Packaging Information Model. XML Data Type: xs:string. The character string is restricted and shall be one of the following characterstring tokens (sco or asset). Where sco indicates that the resource is a SCO resource and asset indicates that the resource is a Asset resource.
- adlcp:persistState (optional) The adlcp:persistState attribute provides a means to persist data from learner attempt to learner attempt. As described in the SCORM Run-Time Environment book [2], when a new learner attempt is initiated a new set of run-time data is provided (i.e., a blank slate of data, default values apply). If the adlcp:persistState attribute is defined and set to true, then the old learner attempt data shall be used for initializing the new learner attempt. XML Data Type: xs:boolean. The default value, if not attribute is provided is false.

Elements:

- <metadata>
- <file>
- <dependency>

Example:

```
<resources>
   <resource identifier="R A2" type="webcontent" adlcp:scormType="sco"</pre>
adlcp:persistState="true" href="sco1.html">
      <file href="sco1.html"/>
   </resource>
<!-- adlcp:persistState is not defined, default value of false should be
applied -->
   <resource identifier="R_A3" type="webcontent" adlcp:scormType="sco"</pre>
href="sco3.html">
      <file href="sco3.html"/>
   </resource>
   <resource identifier="R_A5" type="webcontent" adlcp:scormType="asset"</pre>
href="pics\distress_sigs_add.jpg">
      <file href="pics\distress_sigs_add.jpg"/>
   </resource>
</resources>
```

Code Illustration 3-18

3.4.1.21. <metadata> Element

The <metadata> element is meta-data describing the resource [3]. SCORM defines the meta-data that is used to describe the <resource> as either SCO Meta-data or Asset Meta-data. This depends on the SCORM type (adlcp:scormType) of resource. Refer to Section 4.5.1: Associating Meta-data with SCORM Components for the SCORM SCO and Asset Meta-data Application Profile requirements. The <metadata> element is

considered the root node for meta-data describing the resource. This means that all meta-data for the resource is defined as a child of the <metadata> element.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <metadata>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <metadata> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or 1
Resource	0 or 1

Data Type: The <metadata> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <metadata> element contains the following elements/attributes:

Attributes:

None

Elements:

• {Meta-data} – Refer to Section 3.4.1.5: {*Meta-data*} for information on the inclusion of meta-data.

<u>ADL Note:</u> This is different from the <metadata> element defined in Section 3.4.1.2: <metadata> Element. The IMS Content Packaging Specification only permits the <schema> and <schemaversion> elements on the <metadata> element defined as a child of the <manifest> element.

Example:

Code Illustration 3-19

3.4.1.22. <file> Element

The <file> element is a listing of files that this resource is dependent on [3]. This element is repeated as necessary for each file for a given resource. The element acts as an inventory system detailing the set of files used to build the resource. The <file>

element represents files that are local to the content package. For all files that are local to the content package (physically located in the content package), a <file> element shall be used to represent the file relative to the resource in which it is used. The launch location of the <resource> (<resource> 's href value) is required to be identified as a file.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <file>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <file> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or More
Resource	0 or More

Data Type: The <file> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <file> element contains the following elements/attributes:

Attributes:

• href (mandatory) – The href attribute identifies the location of the file [3]. This value is affected by the use of xml:base values. Refer to Section 3.4.4.1: *Handling the XML Base Attribute* for more information on xml:base usage requirements and guidance. The value has an SPM of 2000 characters. XML Data Type: xs:string.

Elements:

<metadata>

Example:

Code Illustration 3-20

3.4.1.23. <metadata> Element

The <metadata> element is meta-data describing the file [3]. SCORM defines the metadata that is used to describe the <file> as Asset Meta-data. Refer to Section 4.5.1.5:

Asset Meta-data for the SCORM Asset Meta-data Application Profile requirements. The

<metadata> element is considered the root node for meta-data describing the Asset. This means that all meta-data for the Asset is defined as a child of the <metadata> element.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <metadata>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <metadata> element:

SCORM Content Packaging Application Profile	Manifest Multiplicity Requirements
Content Aggregation	0 or 1
Resource	0 or 1

Data Type: The <metadata> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <metadata> element contains the following elements/attributes:

Attributes:

None

Elements:

• {Meta-data} – Refer to Section 3.4.1.5: {*Meta-data*} for information on the inclusion of meta-data.

<u>ADL Note:</u> This is different from the <metadata> element defined in Section 3.4.1.2: <metadata> Element. The IMS Content Packaging Specification only permits the <schema> and <schemaversion> elements on the <metadata> element defined as a child of the <manifest> element.

Example:

Code Illustration 3-21

3.4.1.24. <dependency> Element

The <dependency> element identifies a resource whose files this resource (the resource in which the dependency is declared in) depends on [3]. The resource that the

<dependency> references can act as a container for multiple files that the resource
containing the <dependency> is reliant on.

XML Namespace: http://www.imsglobal.org/xsd/imscp_v1p1

XML Namespace Prefix: imscp

XML Binding Representation: <dependency>

SCORM Requirements: SCORM places a requirement that all manifests shall adhere to the following multiplicity requirements for the <dependency> element:

SCORM Content Packaging	Manifest Multiplicity
Application Profile	Requirements
Content Aggregation	0 or More
Resource	0 or More

Data Type: This element is represented as an empty element. The <dependency> element only contains attributes.

Attributes:

• identifierref (mandatory) – The identifierref attribute references an identifier attribute of a <resource> (within the same package) or a (sub)manifest and is used to resolve the ultimate location of the dependent resource. The value has an SPM of 2000 characters. XML Data Type: xs:string.

Elements:

• None

Example:

Code Illustration 3-22

3.4.1.25. <manifest> Element

Refer to Section 3.4.1.1: *<manifest> Element*.

3.4.1.26. <sequencingCollection> Element

Refer to Section 5.1.12: *<sequencingCollection> Element*.

3.4.2. (Sub)Manifests

One of the general rules, as described by the IMS Content Packaging Specification, is that a Content Package always contains a single top-level manifest that may contain one or more (sub)manifests. The top-level manifest always describes the contents and makeup of the Content Package. Any nested (sub)manifests describe the content at the level to which the (sub)manifest is scoped. This level could be a lesson, module, etc.

The content developers are responsible for deciding whether or not to use (sub)manifests when creating content packages. One rule of thumb is to use a single manifest for tightly coupled content where no part of the content organization may be presented out of the context of the aggregation. Content developers may want to create separate manifests ((sub)manifests) for each lesson, module etc. This is entirely up to the content developer.

If (sub)manifests are used there are several requirements and key points to remember. There are several ways to reference (sub)manifests from within other manifests. The following requirements are defined by the IMS Content Packaging Specification [15]. An <item> element's identifierref attribute can reference the following:

- A <resource> found in the current manifest.
- A <resource> found in a subordinate <manifest> or a <resource> found in any nested <manifest> [15].
- A sub(manifest) that is direct child of the manifest or a manifest found in any nested manifest.

The reverse is not true: An <item> element's identifierref cannot refer to a <manifest> element that is higher than the <manifest> element that contains it, or to any resource referred to by a higher-level <manifest> element [15].

There are two references that are not permitted:

- An <item> is not permitted to reference another <item> or an <item> in a (sub)manifest.
- An <item> is not permitted to reference an <organization> or an <organization> in a (sub)manifest.

The IMS Content Packaging Best Practice Guide, describes and defines scoping rules for packages and manifests. The scoping rules are defined as a parent-child relationship. This means that a manifest "knows" about its (sub)manifests and any of the (sub)manifests child (sub)manifests.

Figure 3.4.2a illustrates the legal reference rules described above. In the figure, an <item> in the manifest can reference a <manifest> that is a child of a <manifest> or a

<manifest> that is a subsequent child of the containing manifest. The scoping rules
defined basically say that a reference can go down a nesting chain:

Manifest 1

Manifest 1.1 (contained by Manifest 1)

Manifest 1.1.1 (contained by Manifest 1.1)

The <item> can also reference a resource in the same manifest, a resource that is in scope of the current manifest in which the <item> is defined.

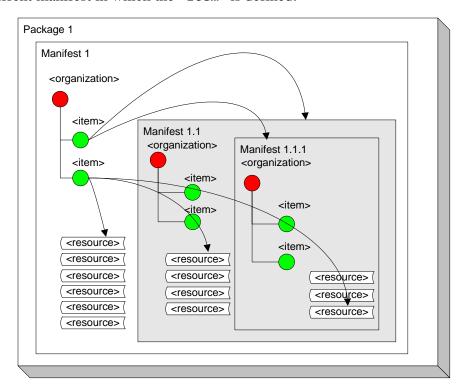


Figure 3.4.2a: Legal References

The IMS Specification also defines references that are illegal and should not be made. Figure 3.4.2b illustrates those types of references that are illegal:

- <item> elements cannot reference a (sub)manifest or resource that is up the chain of manifests, or
- <item> elements cannot reference a (sub)manifest or resource that is in a sibling manifest.

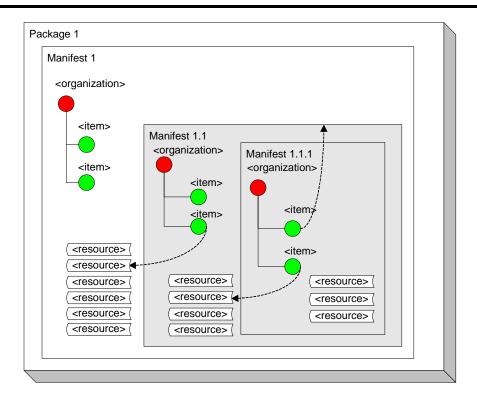


Figure 3.4.2b: Illegal References

3.4.2.1. Item Referencing a (Sub)Manifest

As described above, an <item> element is permitted to reference a (sub)manifest. That is, an <item> element's identifierref is permitted to reference a (sub)manifest identifier. The only stipulation with this is that the (sub)manifest is required to follow the scoping rules defined by the IMS Content Packaging specification. The <item> can only reference (sub)manifests that are a direct descendent of the <item> element's containing manifest.

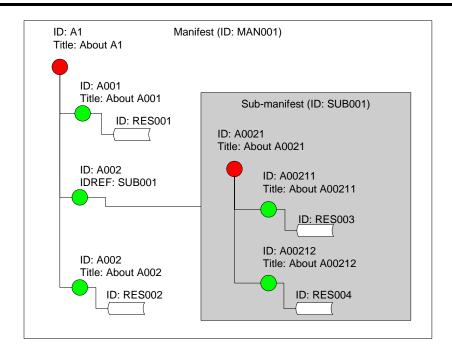


Figure 3.4.2.1a: Item referencing a (sub)manifest

In Figure 3.4.2.1a, the <item> with the identifier A002, references (sub)manifest with the identifier SUB001 (through the identifierref attribute). In order to process the manifest correctly, the LMS is required to conceptually merge, at some point in time, the (sub)manifest with the main manifest (Manifest with the identifier of MAN001). The root node of the organization (i.e., the <organization> element itself of the (sub)manifest) shall merge with the <item> that references the (sub)manifest. Figure 3.4.2.1b, depicts the outcome of the merge.

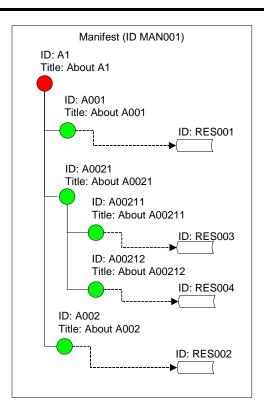


Figure 3.4.2.1b: Conceptually Merged Manifest

There are certain requirements in building manifests where <item> elements reference (sub)manifests:

- 1. No sequencing information, using the <imss:sequencing> element, can be defined on a leaf <item> if that leaf <item> references a (sub)manifest. All information defined on the reference (sub)manifest <organization> should be used when the (sub)manifest is used.
- 2. Title's are not permitted on a leaf <item> if that leaf <item> references a (sub)manifest.
- 3. No ADL Content Packaging namespace (i.e., adlcp) elements are permitted on a leaf <item> references a (sub)manifest.
- 4. No ADL Navigation namespace (adlnav) elements are permitted on a leaf <item> if that leaf <item> references a (sub)manifest.
- 5. If the adlseq:objectivesGlobalToSystem is defined on an <organization> in a (sub)manifest, then this attribute shall be ignored when merging the (sub)manifest.
- 6. Referenced (sub)manifests must have 1 and only 1 <organization> element. The title, sequencing rules, ADL Content Packaging (i.e., adlcp): namespace elements and ADL Navigation (i.e., adlnav) namespace elements defined for that <organization> are used in the merged manifest.

3.4.2.2. Items Referencing Resources

Item elements can also reference resources that are defined in (sub)manifests, following the scoping rules described above. There is no requirement that the referenced resource is contained within a manifest that has an corganization> element. For example, you could build a manifest that contains no corganizations> element and is only a collection of resources. Figure 3.4.2.2a illustrates this fact.

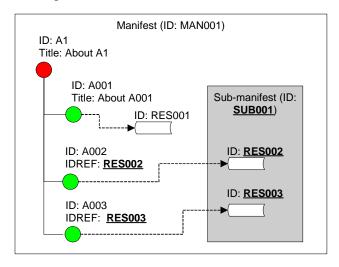


Figure 3.4.2.2a: Referencing Resources

In Figure 3.4.2.2a, Item A002 and Item A003 reference Resources RES002 and RES003, respectively. The (sub)manifest, SUB001, is acting as a container of resources (i.e., there is no organization defined).

Content developers are responsible for adhering to these rules when building content packages that use (sub)manifests

3.4.3. Content Package Manifest Extensions

The IMS Content Packaging Specification allows for communities to place their own namespaced elements throughout the manifest. SCORM carries this practice with a set of extensions. These sets of extensions are required to meet various requirements and to help in the application profiling of the various specifications and standards described in SCORM. The extensions are defined in three separate XML Schema Definition (XSD) files. These files are:

- adlcp_v1p3.xsd: Describes SCORM Content Packaging extensions. These extension elements and attributes are defined within the http://www.adlnet.org/xsd/adlcp_v1p3 namespace. ADL reserves the namespace and the adlcp: prefix to indicate elements of that namespace. These extension elements are described in detail in Section 3.4.1: *Manifest File*.
- adlseq_v1p3.xsd: Describes SCORM Sequencing extensions. These extension elements and attributes are defined within the

http://www.adlnet.org/xsd/adlseq_v1p3 namespace. ADL reserves the namespace and the adlseq: prefix to indicate elements of that namespace. These extension elements are described in detail in Section 3.4.1: *Manifest File*

• adlnav_v1p3.xsd: Describes SCORM Navigation extensions. These extension elements and attributes are defined within the http://www.adlnet.org/xsd/adlnav_v1p3 namespace. ADL reserves the namespace and the adlnav: prefix to indicate elements of that namespace. These extension elements are described in detail in Section 3.4.1: *Manifest File*

Extending the manifest with an organization-defined extension could cause a low degree of semantic interoperability. Organizations that do not recognize the extension may not know how to deal with the extension properly and may ignore the extensions. To keep a high degree of semantic interoperability and if the need arises to extend the manifest, ADL recommends that vertical communities work to a consensus on building a set of interoperable extensions.

3.4.4. Content Package Manifest Href Handling

An "href" is used to describe the location of a <file> or <resource> identified in the content package manifest. This location can either be an internal URL or an external URL. According to the IMS Content Packaging Version 1.1.3 Final Specification, the value of an href is to be constructed according to the rules expressed in RFC 2396 [8].

3.4.4.1. Handling the XML Base Attribute

The XML Base [7] is a construct used to explicitly specify the base URL of a document in resolving relative URLs in links to files in a Content Package. The URLs can be prefixed by an XML Base attribute. This allows an author or authoring tool to specify and/or offset the base directory so that it is not necessary to repeat the base directory in every use of that URL.

The default base directory is the location of the package. This concept is known as "relative to the package." The only way to explicitly override this default base directory is to reference a file with an absolute path that is external to the package. If the file is not external to the package, any XML Base value will simply offset the default base directory. The XML Base attribute can be either:

- a relative URL (describing the offset from the root of the package, e.g., Course/Lesson/), or
- external URL (external from the package, e.g., http://www.adlnet.org/content/)

Trailing slashes are required to be at the end of any XML Base value. When referencing local files in the content package, the URL, including XML Base, shall not begin with a leading forward slash ("/"). As defined in RFC 2396, a path with a leading forward slash indicates the absolute path of that file. Using a leading forward slash denotes the root of

the local host. With this in mind, the use of a leading forward slash is not permitted to minimize misinterpretation and increase portability.

The IMS Content Packaging XML Binding Specification allows for the use of the XML Base attribute in the <manifest>, <resource> and <resource> elements.

If the XML Base attribute is present in the <manifest> element, all URLs found within the child elements of the <manifest> element shall use the XML Base value to construct the actual href value. This includes the href values for the <resource> and <file> elements and the value held in the <adlcp:location> element.

Code Illustration 3-23

Because of the use of the XML Base attribute in the <manifest> element and an href exists within the child hierarchy of the <manifest> element, the actual href for the resource, shown in *Code Illustration 3-23*, is: Course/Lesson01/Topics/index.htm.

If the XML Base attribute is present in the resources> element, all URLs found within
the child elements of the resources> element shall use the XML Base value to
construct the actual href value.

Code Illustration 3-24:

Because of the use of the XML Base attribute in the <resources> element and an href exists within the child hierarchy of the <resources> element, the actual href for the resource, shown in *Code Illustration 3-24*, is: Course/Lesson01/Topics/index.htm

If the XML Base attribute is present in the resource> element, all URLs found within
the child elements of the resource> element shall use the XML Base value to construct
the actual href value.

Code Illustration 3-25

Because of the use of the XML Base attribute in the <resource> element and an href exists within the child hierarchy of the <resource> element, the actual href for the resource, shown in *Code Illustration 3-25*, is: Course/Lesson01/Topics/index.htm.

If a combination of XML Base attributes is used throughout the Manifest, the value of the XML Base attribute shall be appended in the order of the hierarchy of these elements to form the actual URL. The <manifest> elements XML Base value comes first, followed by the <resource> elements XML Base value, followed by the <resource> elements XML Base value, followed by the href attribute's value.

Code Illustration 3-26

Because of the use of the XML Base attributes in the <manifest>, <resource> and <resource> elements and an href exists as an attribute of the <resource> element, the actual href for the resource, shown in *Code Illustration 3-26*, is:

Course/Lesson01/Topics/index.htm.

3.4.4.2. URL Encoding and Decoding

In some situations the URLs used in defining the location of the files or resource may need to be encoded. RFC 2396 defines the rules and requirements for encoding URLs. Sections 2.2 through 2.4 of RFC 2396 describe how and when to encode or decode URLs. Some characters have a "structural" purpose as delimiters in a URL and may not be escaped when they serve that purpose. Those characters are:

- "/" in the schema part of the URL, or as a separator in the path part of a URL.
- ":" in the schema part of the URL
- "#" as the lead character for an anchor value
- "&" as the separator between parameters
- "?" as the separator between the path part of a URL and the parameters
- "=" as the separator between a parameter value and the parameter name
- "%" as an escape indicator

If one of those characters exists in the URL, but not for that purpose, it must be encoded (or escaped). With this in mind, it would be incorrect to take a complete URL such as "Course/Lesson/Module/Resources/bar.html" and just escape it using an ECMAScript escape function, since that would change the path separator slashes that are required for interpretation of the URL into escaped characters. On the other hand, if the value of a parameter that is included as part of the URL contains a slash character, that character must be escaped. So, escaping must be done *before* assembling the parts of the URL, by escaping the segments that need to be escaped and then assembling those parts with delimiters that should not be escaped.

Additionally, double encoding shall not be used when the URL is included in a manifest. Thus the value of an href attribute for a resource shall be a string that contains a valid URL in the exact format required to launch the resource in a browser.

Furthermore, if parameters are specified for an <item>, they shall be properly escaped for use in a URL. For example, lets say the following parameters are needed for a particular SCO:

• "?ratio=3/4&scale=100&label=Gilbert & Sullivan"

The example above is not a valid parameter value because it contains illegal characters. The "/" in "3/4" needs to be escaped because it is not part of the URL and it is not used as a separator in the path. Also, the "&" in "Gilbert & Sullivan" needs to be escaped because it is not used as a separator between parameters. The correctly escaped equivalent to these parameters is:

• "ratio=3%2F4&scale=100&label=Gilbert %26 Sullivan"

However, the following is not correctly escaped because characters are double-escaped:

"ratio=3%252F4&scale=100&label=Gilbert %2526 Sullivan"

Since manifests are implemented in XML, the XML rules for escaping must also be followed. For example, the "&" may appear in its literal form only when used within a comment, processing instruction or a CDATA section according to the XML 1.0 standard. If they are needed elsewhere, as in the above example, it must be escaped using either numeric character references or strings ("%26" or "&"). The following would be the correct value to use in the parameters attribute of the item element:

• "ratio=3%2F4%26scale=100%26label=Gilbert %26 Sullivan"

It is permitted to escape other characters such as the "=" or the " " such as:

"ratio%3D3%2F4%26scale%3D100%26label%3DGilbert%20%26%20Sullivan"

3.4.4.3. Handling the Parameters Attribute

There may be situations where content objects require information at launch time in order for the content object to operate properly. This information is sometimes referred to as launch parameters (or query strings). There are currently two mechanisms for representing query strings in a Manifest.

• Option 1: As part of the <resource> or <file> href attribute. The content developer can place the query string as part of the href. An example of this is:

```
<resource href="foo.html?Topic=1">
```

Code Illustration 3-27

• Option 2: Using the parameters attribute of the <item>. The content developer also has the option of placing the query string or launch parameters in the parameters attribute of the <item> that references a <resource>. The href attribute in the <resource> element is the URL used to launch the resource, which may or may not resolve to a file in the package. The href in the <file> element specifies a file name and, if, required, the installation path relative to the package installation "root" directory. These are not redundant, because they are not necessarily the same. For example, the href in the <resource> element might very well be something like "scos/foo.html#xyz", while the corresponding <file> href is "scos/foo.html".

Also, note that the manifest is also an inventory of every file included in the package, including the launch file for a resource. In other words, the <file> element is an inventory entry. The <resource> element specifies how to use a particular set of files (or how to access an external resource), and the <item> element in an <organization> specifies how to use a resource in one or more places in a content organization.

If an <item> references a <resource> in an <organization>, it is required that the <resource> contains an href entry for launching the resource. The parameters attribute is defined as the static parameters to be passed to the resource at launch time. This allows for the ability to reference the same <resource> from different items for different purposes.

For example:

```
<item identifier="I01" identifierref="R_I01" parameters="?Topic=1" ...>
...
<resource identifier="R_I01" href="foo.htm" ...>
```

Code Illustration 3-28

In option 1, each Resource would have to be repeated in the Manifest, with parameters defined in the href attribute.

Due to the number of ways to syntactically represent the launch parameters within the Manifest, the IMS Content Packaging Specification details an algorithm for constructing the href attribute of the resource element and the parameters consistently.

```
While first char of parameters is in "?&"
Clear first char of parameters
If first char of parameters is "#"
If URL contains "#" or "?"
Discard parameters
Done processing URL
If URL contains "?"
Append "&" to the URL
Else
Append "?" to the URL
Append parameters to URL
```

Code Illustration 3-29

3.5. SCORM Content Package Application Profiles

SCORM Content Package Application Profiles describe how the IMS Content Packaging Specification will be applied within the overall context of SCORM. The application profiles provide practical guidance for implementers and define additional requirements imposed by SCORM to integrate other standards and specifications and ensure interoperability. The IMS Content Packaging Specification will be used as the basis for a SCORM Content Package. However, SCORM will impose additional requirements, above those defined by the IMS specification, to ensure sufficient information is included in each package. This will enable SCORM-conformant systems to import and export packages that can be used by other SCORM-conformant systems.

SCORM introduces the Content Aggregation Model (Section 2.1: *The SCORM Content Model Components*) that defines a generalized framework for object based learning content. The components are Assets, SCOs and Content Organizations. There are currently two SCORM Content Package Application Profiles, which describe how to package Content Aggregation Model components, identified:

- Resource Packages and,
- Content Aggregation Packages

The following sections describe the application profiles, the constraints imposed by SCORM and a set of recommended best practices.

3.5.1. Resource Package

The SCORM Resource Package Application Profile defines a mechanism for packaging Assets and SCOs without having to provide any organization, learning context or curricular taxonomy. Packaging learning resources provides a common medium for exchange. The Resource Package Application Profile should be used for moving SCOs and Assets from system to system. Since there is no organization defined in a Resource Package, no logical content structure is defined. Since no structure is defined, this type of package cannot be delivered by an LMS to the learner. The SCORM Content Package is merely a collection of learning resources that can be transferred between learning systems.

In many cases an Asset resource or a SCO resource will be comprised of a single file. However, there are cases where Assets and SCOs could be comprised of multiple files. The SCORM Resource Package Application Profile allows for packaging Assets and SCOs comprised of single or multiple files. Also, Assets and SCOs may be included locally in the package or may be referenced externally. Locally packaged files will be included as physical files within the overall package. When externally referenced, the Assets and SCOs will not be included as physical files within the package, but will instead be referenced by an URL.

The following figures depict several resource packages. The examples show a sample imsmanifest.xml instance and how Assets and SCOs could be represented. Figure 3.5.1a shows an example of an Asset being represented as a <file> element in an imsmanifest.xml instance.

```
<manifest>
   <organizations/>
   <resources>
      <resource identifier="sco01_001" adlcp:scormType="sco"</pre>
                 href="lesson01/sco01.html">
         <file href="sco01.html"/>
         <file href="image1.jpg">
             <metadata>
                 <adlcp:location>lesson01/metadata/image1.xml</adlcp:location>
         </file>
       </resource>
    </resources>
                           <resource>
</manifest>
                             ("sco")
                               <file>
                                                Asset
                               <file>
                                              Meta-data
```

Figure 3.5.1a: Example of an Asset represented as a <file> element

Figure 3.5.1b shows an example of an Asset being represented as a <resource> element (i.e., Asset resource) in an imsmanifest.xml instance.

```
<manifest>
   <organizations/>
   <resources>
      <resource identifier="sco01_001" adlcp:scormType="asset"</pre>
                href="lesson01/topic01.html">
         <file href="topic01.html"/>
         <file href="image1.jpg"/>
         <metadata>
             <adlcp:location>lessson01/topic01.xml</adlcp:location>
       </resource>
    </resources>
</manifest>
                           <resource>
                            ("asset")
                                               Asset
                                             Meta-data
                               <file>
                               <file>
```

Figure 3.5.1b: Example of an Asset represented as a <resource> element

Figure 3.5.1c shows an example of a SCO being represented as a <resource> element in an immanifest.xml instance.

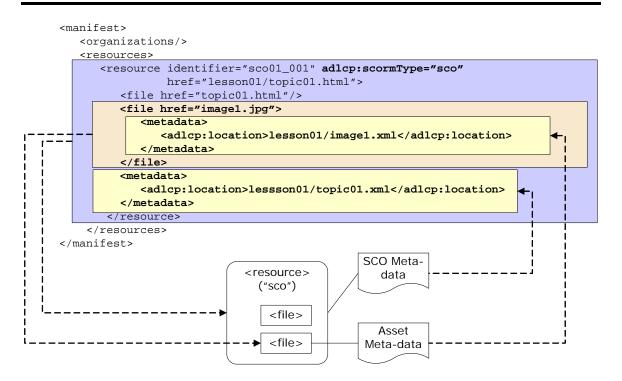


Figure 3.5.1c: Example of a SCO represented as a <resource> element

3.5.2. Content Aggregation Package

SCORM does not impose any requirements on the structure for content organizations. Individual content developers are free to aggregate content into any structure that provides value to them. The IMS Content Packaging Specification [3] provides a framework that includes most of the information that is needed by ADL, as well as logical places in which ADL extensions can be added to capture the rest of the information. Additionally, the IMS packaging model also provides a clean way to inventory and bundle all of the physical files required to deliver the learning resource, as well as to identify relationships between files that belong to one or more learning resources, including externally referenced resources that are not contained as physical files within a content package. The Content Aggregation Application Profile should be used to bundle learning resources and the content structure. This is the application profile that should be used to bundle complete courses, modules, lessons, etc. The Content Aggregation package's main purpose is to be used to deliver content to an end user. These packages are the ones that the LMS that deliver the content understand how to process and make available to the learner.

The IMS Content Packaging Specification also enables a separation of learning resources from the way those resources can be organized, allowing for one or more uses of the same learning resources within different contexts. SCORM defines a mechanism for packaging the files and providing the structure.

Figure 3.5.2a shows an example of a Content Organization being represented in an imsmanifest.xml instance.

```
<organizations default="org_1">
            <organization identifier="org_1">
               <item identifier="lesson1_id1">
                  <title>Introduction to SCORM</title>
 Content
                  <item identifier="lesson1_id1/topic2" identifierref="sco01_001">
Organization
                     <title>SCORM Content Model</title>
                  </item>
               <!-- Content Structure Continued -->
               </item>
            </organization>
         </organizations>
         <resources>
            <resource identifier="sco01_001" adlcp:scormType="sco"</pre>
                      href="lesson01/topic01.html">
               <file href="topic01.html"/>
               <file href="image1.jpg">
                  <metadata>
                     <adlcp:location>lesson01/image1.xml</adlcp:location>
                  </metadata>
               </file>
               <metadata>
                  <adlcp:location>lessson01/topic01.xml</adlcp:location>
             </resource>
          </resources>
      </manifest>
                                                       SCO Meta-
                                     <resource>
                                                          data
                                      ("sco")
                                        <file>
                                                         Asset
                                        <file>
                                                       Meta-data
```

Figure 3.5.2a: Content Aggregation Package

3.5.3. SCORM Content Package Application Profile Requirements

Table 3.5.3a defines the requirements for each of the aforementioned Content Package Application Profiles. Each of the profiles is listed with the corresponding requirements for each of the content packaging elements.

- "M" indicates that the element is Mandatory.
- "O" indicates that the element is Optional.
- "NP" indicates that the element is Not Permitted.

Elements are indicated as they would in the XML Binding (i.e., using XML notation <element_name>). Attributes are indicated without any notation (e.g., 1.1 identifier is an attribute of the <manifest> element). The numbering system is based off of the IMS Content Packaging Specification.

Elements	Resource Package	Content Aggregation Package
1.0 <manifest></manifest>	M	M
1.1 identifier	M	M
1.2 version	0	O
1.3 xml:base	О	O
1.4 <metadata></metadata>	0	O
1.4.1 <schema></schema>	О	O
1.4.2 <schemaversion></schemaversion>	О	O
1.4.3 {Meta-data}	0	O
1.5 <organizations></organizations>	M	M
1.5.1 default	NP	M
1.5.2 <organization></organization>	NP	M
1.5.2.1 identifier	NP	M
1.5.2.2 structure	NP	O
1.5.2.3 adlseq:objectivesGlobalToSystem	NP	O
1.5.2.4 <title></td><td>NP</td><td>M</td></tr><tr><td>1.5.2.5 <item></td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.1 identifier</td><td>NP</td><td>M</td></tr><tr><td>1.5.2.5.2 identifierref</td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.3 <title></td><td>NP</td><td>M</td></tr><tr><td>1.5.2.5.4 isvisible</td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.5 parameters</td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.6 <item></td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.7 <metadata></td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.7.1 {Meta-data}</td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.8 <adlcp:timeLimitAction></td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.9 <adlcp:dataFromLMS></td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.10 <imsss:sequencing></td><td>NP</td><td>O</td></tr><tr><td>1.5.2.5.11 <adlnav:presentation></td><td>NP</td><td>O</td></tr><tr><td>1.5.2.6 <metadata></td><td>NP</td><td>O</td></tr><tr><td>1.5.2.6.1 {Meta-data}</td><td>NP</td><td>O</td></tr><tr><td>1.5.2.7 <imsss:sequencing></td><td>NP</td><td>О</td></tr></tbody></table></title>		

1.6 <resources></resources>	M	M
1.6.1 xml:base	0	О
1.6.2 <resource></resource>	0	О
1.6.2.1 identifier	M	M
1.6.2.2 type	M	M
1.6.2.3 href	0	О
1.6.2.4 adlcp:scormType	M	M
1.6.2.5 adlcp:persistState	0	О
1.6.2.6 xml:base	0	О
1.6.2.7 <metadata></metadata>	0	О
1.6.2.7.1 {Meta-data}	0	0
1.6.2.8 <file></file>	О	О
1.6.2.8.1 href	M	M
1.6.2.8.2 <metadata></metadata>	0	0
1.6.2.8.2.1 {Meta-data}	0	О
1.6.2.9 <dependency></dependency>	0	0
1.6.2.9.1 identifierref	M	M
1.7 <manifest></manifest>	0	O
1.8 <imsss:sequencingcollection></imsss:sequencingcollection>	NP	О

3.6. Best Practices and Practical Guidelines

The following section describes a set of recommended best practices and practical guidelines for the development of content packages. These best practices are not considered conformance requirements.

3.6.1. Packaging Multiple Courses

There may be situations in which a content developer would like to package multiple distinct courses for delivery into a system. This packaging can be done by bundling each course up in a separate (sub)manifest.

If a content developer wants to move multiple courses in a Package (a curriculum), the content developer would use a top-level manifest to contain each course level manifest and any instructional object manifests that each course might contain.

Such a content package would typically have to be disaggregated in order to be delivered to learners in a practical LMS run-time system. However, how to do this disaggregation is out of scope with this version of the SCORM. At this point there is no consensus or standard on how to publish a very large or very complex package in a practical LMS, because of different LMS systems and repositories use different methods to represent or store the learning content to deliver to learners.

3.6.2. Multiple Organizations for a Single Course

The content package allows for representations of multiple organizations for its resources. The same resources may be used in different content organizations adapted for different audiences. For example, one may find value in forcing a novice user to progress through content in a linear manner without the ability to skip any instructional units, while an advanced user may want to use the content as a refresher by selecting only the instructional units that they would like to experience. Multiple organizations can be used to structure a set of resources in different ways for different reasons. The utilization of multiple organization elements is ideal for the use case. However, if content developers would like to package and move multiple distinct courses, then those courses should be created in separate (sub)manifests.

3.6.3. Packaging Learning Content for Reuse

The scope of a manifest is elastic. A manifest can describe a part of a content organization that can exist by itself outside of the context of a course (an instructional object), an entire content organization, or a collection of content organizations. This

decision is given to content developers to describe their content in the way they want it to be considered for aggregation or disaggregation.

The general rule is that a Content Package always contains a single top-level manifest that may contain one or more (sub)manifests. The top-level manifest always describes the Package. Any nested (sub)manifests describe the content at the level to which the (sub)manifest is scoped, such as a course, instructional object or other level.

For example, if all content comprising a content organization is tightly coupled that no part of it may be presented out of the content organization's context, a content developer would want to use a single manifest to describe that content organization's resources and organization. However, content developers who create "instructional objects" that could be recombined with other "instructional objects" to create different course presentations would want to describe each "instructional object" in its own manifest, then aggregate those manifests into a higher-level manifest containing a content organization.

3.6.4. Using the <dependency> Element

Several learning resources, defined in a content package, may contain the same set of files. The files are represented as <file> elements in the manifest. The <dependency> element can be used to group these sets of files. The use of the <dependency> element in this scenario will alleviate the duplication of the <file> element for each set of files in each resource. In this scenario, a <resource> element can be used to gather the set of files. Once the <resource> is set up, all of the other resources that depend on the set of files, can reference the resource by using the <dependency> element.

```
<manifest>
   <organizations>
      <organization>
         <item identifier="ID1" identifierref="R_ID1"></item>
         <item identifier="ID2" identifierref="R_ID2"></item>
      </organization>
   </organizations>
   <resources">
      <resource identifier="R_ID1" adlcp:scormType="sco" href="index_1.htm">
         <file href="index_1.htm"/>
         <file href="image1.jpg"/</pre>
         <file href="image2.jpg"/>
         <file href="image3.jpg"/>
         <file href="apiWrapper.js"/>
      <resource identifier="R_ID2" adlcp:scormType="sco" href="index_1.htm">
         <file href="index.htm"/>
         <file href="image1.jpg"/</pre>
         <file href="image2.jpg"/>
         <file href="image3.jpg"/>
         <file href="image4.gif"/>
         <file href="apiWrapper.js"/>
      </resource>
   </resources>
</manifest>
```

Code Illustration 3-30

In Code Illustration 3-30, the two defined resources both share a common set of files:

- image1.jpg
- image2.jpg
- image3.jpg
- apiWrapper.js

These sets of files are repeated, as <file> elements, for each resource. The method described above can be used to eliminate the repeating of these <file> elements.

```
<manifest>
   <organizations>
      <organization>
         <item identifier="ID1" identifierref="R_ID1"></item>
         <item identifier="ID2" identifierref="R_ID2"></item>
      </organization>
   </organizations>
   <resources">
      <resource identifier="R_ID1" adlcp:scormType="sco" href="index_1.htm">
         <file href="index_1.htm"/>
         <dependency identifierref="DEP_R_ID1"/>
      </resource>
      <resource identifier="R_ID2" adlcp:scormType="sco" href="index_1.htm">
         <file href="index.htm"/>
         <file href="image4.gif"/>
         <dependency identifierref="DEP_R_ID1"/>
      </resource>
      <resource identifier="DEP_R_ID1" adlcp:scormType="asset">
         <file href="image1.jpg"/
         <file href="image2.jpg"/>
         <file href="image3.jpg"/>
         <file href="apiWrapper.js"/>
      </resource>
   </resources>
</manifest>
```

Code Illustration 3-31

In *Code Illustration 3-31*, a resource was created to hold the commonly used set of files. The resource was given a unique identifier, as required. The newly created resource is an asset. No href attribute was provided by the resource. The asset will never be launched by an LMS (no <item> identifierref references the resource). The resources that share these sets of files now contain a <dependency> element that references, using the identifierref attribute, the newly created resource.

SECTION 4 SCORM Meta-data

This page intentionally left blank.

4.1. SCORM Meta-Data Overview

Up to this point, SCORM has described the basic building blocks (SCORM Content Model Components) for content development. SCORM has also described how to bundle the building blocks into Content Aggregations and package those pieces for distribution from system to system. Once the SCORM Content Model components have been built, it is useful to describe those components in a consistent manner. Describing the components with meta-data facilitates the search and discovery of the components across systems. An LMS could use the meta-data to give the learner information about the content organization (i.e., course, lesson, module, etc). Meta-data can also be used at run-time to help in the decision of what content model component to deliver to the learner.

This section provides specific requirements and guidance for applying meta-data to SCORM Content Model Components. The SCORM Meta-data Application Profiles defined in this section directly reference the IEEE 1484.12.1-2002 Learning Object Meta-data (LOM) [11] standard and the IEEE 1484.12.3 Draft Standard for Extensible Markup Language (XML) Binding for Learning Object Metadata Data Model [14]. The IEEE provides roughly 64 meta-data elements – more than would be practical for everyday use. This section defines, in the SCORM context, which data elements are mandatory in meta-data used for tagging the components described in the Content Aggregation Model. While SCORM fully adheres to the IEEE standard, this section provides additional specific guidance for using meta-data to describe SCORM components. SCORM strongly recommends the use of the IEEE LOM for describing SCORM Content Model Components. However, other meta-data schemes may be used. These meta-data schemes may or may not be recognized by systems.

The following section is broken up into five basic subsections each describing a different piece to SCORM Meta-data:

- Section 4.1: *Meta-data Overview*. This section provides a general overview and background information on LOM.
- Section 4.2: *Meta-data Creation*. This section defines requirements for creating meta-data. The section provides the details on the requirements defined by IEEE and how these requirements affect SCORM. This section provides the details on building XML instances adhering to the IEEE LOM requirements.
- Section 4.3: LOM XML Schema Validation Approaches. This section describes
 the validation approaches developed by IEEE Draft Standard for Extensible
 Markup Language (XML) Binding for Learning Object Metadata Data Model.
 The validation approaches provide different support for XML validation
 requirements depending on user needs.
- Section 4.4: *Meta-data Extensions*. This section describes the extension capabilities defined by IEEE Draft Standard for Extensible Markup Language

- (XML) Binding for Learning Object Metadata Data Model and SCORM. The section also discusses the pros and cons to creating extensions.
- Section 4.5: SCORM Meta-data Application Profiles. This section provides specific guidance for how to implement meta-data in the SCORM environment. All elements defined by IEEE are considered optional for use. This section defines SCORM mandatory elements for the different SCORM Meta-data Application Profiles and how they are expressed in XML for SCORM conformance.

The purpose of meta-data is to provide a common nomenclature enabling learning resources to be described in a common way. Meta-data can be collected in catalogs, as well as directly packaged with the learning resource it describes. Learning resources that are described with meta-data can be systematically searched for and retrieved for use and reuse.

Meta-data for learning resources has been under development within a number of national and international organizations over the past few years. ADL has looked to the IEEE LTSC Standard for Information Technology -- Education and Training Systems -- Learning Objects and Metadata Working Group, the IMS Global Learning Consortium, Inc. and the Alliance of Remote Instructional Authoring and Distribution Networks for Europe (ARIADNE) as the bodies that are defining meta-data specifically for learning resources. These groups, which have been working collaboratively, have developed a core set of specifications to which this document refers.

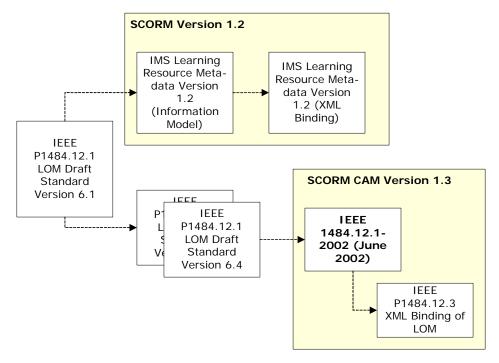


Figure 4.1a: Meta-data Evolution

At the time of the writing of SCORM Version 1.2, the IEEE LOM was still in a draft form. The IMS Global Learning Consortium was in the process of creating an IMS

Learning Resource Metadata Specification that was based on of the IEEE LOM Draft Version 6.1. Once the IMS released the IMS Learning Resource Metadata Specification as a final version, SCORM incorporated this work into SCORM Version 1.2. Since the publication of SCORM Version 1.2, the IEEE has officially released the IEEE 1484.12.1-2002 Learning Object Metadata Standard. This standard evolved from the Working Draft Version 6.1 that IMS based their specification on. The IEEE has also building a standard that describes how to bind 1484.12.1-2002 to XML. SCORM will adhere to the current draft XML binding and will evolve as the draft standard solidifies.

SCORM applies the IEEE LOM meta-data element definitions to SCORM Content Model Components described in the Content Aggregation Model. These components define the meta-data aspects of the SCORM CAM.

This mapping of standardized definitions from IEEE to the SCORM CAM provides the missing link between general specifications and specific content models. The following sections define the SCORM application of the IEEE standards to the meta-data aspects of the SCORM CAM.

4.2. SCORM Meta-data Creation

The following sections outline the LOM XML meta-data elements. According to the IEEE, every LOM meta-data element is optional. This implies that when building a XML meta-data instance, the developer can optionally pick and choose which elements to use.

In order to meet several of the key high-level requirements of ADL, SCORM places additional requirements on which elements are mandatory in SCORM-conformant Metadata XML instances. These additional requirements enable the ability to describe those objects with meta-data (in a consistent manner using a consistent set of required elements) and the ability to find those learning objects in a repository so they can be used in other contexts. This list of required elements is different depending on the SCORM Content Model Component (Asset, SCO, Activity, Content Organization) being described by the meta-data. Refer to Section 4.5.2: SCORM Meta-data Application Profile Requirements for a complete listing of the elements and their usage requirements.

The 1484.12.1-2002 Information Model (hereafter referred to as LOM Information Model) describes the set of data elements that are available to build SCORM-conformant meta-data. Along with the requirements defined in the LOM Information Model, SCORM defines Application Profiles for several types of meta-data instances. These requirements and definitions of the application profiles can be found in Section 4.5.2: SCORM Meta-data Application Profile Requirements. SCORM-conformant meta-data may contain additional data elements, as described in Section 4.4: Meta-data Extensions.

The LOM Information Model is broken up into nine categories. These categories are based on the definitions found in the LOM Information Model. The nine categories of meta-data elements are:

- 1. The *General* category can be used to described general information about the SCORM Content Model Component as a whole.
- 2. The *Life Cycle* category can be used to describe features related to the history and current state of the SCORM Content Model Component and those who have affected the component during its evolution.
- 3. The *Meta-metadata* category can be used to describe information about the metadata record itself (rather than the SCORM Content Model Component that the record describes).
- 4. The *Technical* category can be used to describe technical requirements and characteristics of the SCORM Content Model Components.
- 5. The *Educational* category can be used to describe the educational and pedagogic characteristics of the SCORM Content Model Component.
- 6. The *Rights* category can be used to describe the intellectual property rights and conditions of use for the SCORM Content Model Component.
- 7. The *Relation* category can be used to describe features that define the relationship between this SCORM Content Model Component and other targeted components.

- 8. The *Annotation* category can be used to provide comments on the educational use of the SCORM Content Model Component and information on when and by whom the comments were created.
- 9. The *Classification* category can be used to describe where the SCORM Content Model Component falls within a particular classification system.

Some elements use the term smallest permitted maximum (SPM) in describing the multiplicity and/or data types. The SPM indicates that applications that process metadata shall process at least that number of elements or number of characters, but are free to support and exceed the limit.

For those elements that have a data type of a Vocabulary Type, additional information is provided on whether or not the vocabulary is a Restricted or Best Practice Vocabulary. Restricted indicates that the meta-data element is restricted to the vocabulary entries listed. Best Practice indicates that SCORM recommends using the listed vocabulary entries as the "best practice" for doing so.

The following table is used to describe the SCORM Meta-data Application Profile (refer to Section 4.5 for more details) requirements:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	<requirement> (SPM: x)</requirement>
Content Organization	<requirement> (SPM: x)</requirement>
Activity	<requirement> (SPM: x)</requirement>
SCO	<requirement> (SPM: x)</requirement>
Asset	<requirement> (SPM: x)</requirement>

Table 3.4.1a: SCORM Meta-data Application Profile Table Format

The left-hand column is title *SCORM Meta-data Application Profile*. This column describes the types of application profiles defined by SCORM. The right-hand column is title *Meta-data Multiplicity Requirements*. This column defines the multiplicity requirement for the XML elements in the meta-data.

Multiplicity Requirement	Explanation
1 and only 1	The element must exist 1 and only 1 time within the parent element
0 or More	The element can exist 0 or More times within the parent element.
1 or More	The element must exist 1 or More times within the parent element.
2 or More	The element must exist 2 or More times within the parent element.
0 or 1	The element can exist 0 or 1 time within the parent element.

Table 3.4.1b: Explanation of Multiplicity Requirements

Table 3.4.1b defines the types of multiplicities that are used in this section. Each type is accompanied by a brief explanation. The table also has definitions for smallest permitted maximums (SPMs) for those elements that have a multiplicity of more than 1. The SPM indicates the smallest number of elements that must be supported by a processing system.

4.2.1. <lom> Element

All meta-data instances shall have <lom> as the root node. The root node begins to define the meta-data used to describe the SCORM Content Model Component. When placed in a content package (refer to Section 4.5.1: Associating Meta-data with SCORM Components), all meta-data is placed within a <imscp:metadata> element (refer to Section 3.4.1: Manifest File) found in an imsmanifest.xml file. The <lom> root node encapsulates all of the categories described above. There is no implied order of the nine categories. The child elements can appear in any order.

All namespace declarations should be declared inside the <lom> element. This includes any namespaces that are considered extensions to the meta-data. Although this is not considered a requirement, based on the XML specifications, ADL considers this to be a "best practice" and urges vendors and tools to provide this information.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <10m>

SCORM Requirements: The <lom> element contains important elements that SCORM requires to describe all of the SCORM Content Model Components.

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	1 and only 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

Data Type: The <lom> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <lom> element contains the following child elements:

- <general>
- <lifeCycle>
- <metaMetadata>
- <technical>
- <educational>
- <rights>
- <relation>
- < <annotation>
- <classification>

Example:

The example is used to illustrate the concepts described above. The nine category elements are represented as empty elements for simplicity.

Code Illustration 4-1

4.2.2. <general> Element

The General category groups the general information that describes the resource as a whole. The resource in this case is the particular SCORM Content Model Component (Asset, SCO, Activity or Content Organization) being described. This general information is sometimes viewed as key information in that it is important for describing the particular component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <general>

SCORM Requirements: The multiplicity requirements for the <general> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

Data Type: The <general> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <general> element contains the following child elements:

- <identifier>
- < <title>
- <language>
- <description>
- <keyword>
- <coverage>
- <structure>
- <aggregationLevel>

Example:

```
<1om>
   <general>
      <identifier>
         <catalog>URI</catalog>
         <entry>http://www.adlnet.org/content/CO_01</entry>
      </identifier>
      <title>
         <string language="en">Title for the learning object</string>
     </title>
     <language>en</language>
      <description>
         <string language="en">Textual description</string>
      </description>
      <kevword>
         <string language="en">learning object</string>
     </keyword>
      <coverage>
         <string language="en">Circa, 16th century France</string>
     </coverage>
      <structure>
         <source>LOMv1.0</source>
         <value>atomic</value>
     </structure>
      <aggregationLevel>
        <source>LOMv1.0
        <value>2</value>
      </aggregationLevel>
  </general>
</lon>
```

Code Illustration 4-2

4.2.2.1. <identifier> Element

The <identifier> element represents a mechanism for assigning a globally unique label that identifies the SCORM Content Model Component. The notion of assigning a globally unique identifier to a component is important when dealing with multiple facets of learning content development (e.g., versioning, maintenance, etc.).

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <identifier>

SCORM Requirements: The multiplicity requirements for the <identifier> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	1 or More (SPM 10)
Activity	1 or More (SPM 10)
SCO	1 or More (SPM 10)
Asset	1 or More (SPM 10)

Data Type: The <identifier> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <identifier> element contains the following child elements:

- <catalog> optional
- <entry> mandatory

Example:

Code Illustration 4-3

4.2.2.1.1. <catalog> Element

The <catalog> element represents the name or designator of the identification or cataloging scheme for the entry. There are a variety of cataloging systems available. SCORM does not require the use of any one particular cataloging system. Organizations are free to choose any cataloging scheme that meets their organizations practices or policies. Some types of Cataloging systems are:

- Universal Resource Identifier (URI)
- Universal Resource Name (URN)
- Digital Object Identifier (DOI)
- International Standard Book Numbers (ISBN)
- International Standard Serial Numbers (ISSN)

The <catalog> element represents the scheme used to create and manage the entry.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <catalog>

SCORM Requirements: The multiplicity requirements for the <catalog> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

SCORM recommends the use of the <catalog> element to describe the catalog or identification system for the <entry> element.

Data Type: The <catalog> element is represented as a CharacterString element. The CharacterString has an SPM of 1000 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-4

4.2.2.1.2. <entry> Element

The <entry> element represents the value of the identifier within the identification or cataloging scheme (see <catalog> element) that designates or identifies the learning object.

Identifiers can take on various formats. The IEEE requires that the actual identifier value be represented as a CharacterString. Organizations are free to choose any mechanism to create unique identifiers that meets their organizations practices or policies.

The following listing is a sampling of identifier values (entry):

Scheme (<catalog>)</catalog>	Value (<entry>)</entry>
Universal Resource Name	urn:ADL: 1345-GFGC-23ED-3321
Universal Resource Identifier	http://www.adlnet.org/content/C0_01
ADL Registry	2134-RF43-3233-FRI9-ACDA

ADL Note: ADL Registry does not exist. This is just an example of one type of registry system that may exist.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <entry>

SCORM Requirements: The multiplicity requirements for the <entry> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

SCORM places a requirement that the <entry> element shall be present. The actual value used to identify the learning resource is held by the <entry> element.

Data Type: The <entry> element's value is represented as a CharacterString. The CharacterString has an SPM of 1000 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-5

4.2.2.2. <title> Element

The <title> element represents the name given to the learning object.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <title>

SCORM Requirements: The multiplicity requirements for the <title> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

Data Type: The <title> element is represented as a LangString element. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Example:

Code Illustration 4-6

4.2.2.3. < language> Element

The <language> element represents the primary human language or languages used within the SCORM Content Model Component to communicate to the intended user. The Language element can be repeated. This allows for the ability to described components that are built to support multiple languages.

The value held by the <language> element shall be represented according to the following:

```
Language = Langcode("-"Subcode)*
```

Langcode – Represents a language code as defined by ISO 639:1988. This value is mandatory.

Subcode – Represents a country code from the code set defined by ISO 3166-1997. This value can be repeated and is optional.

Examples:

- "en"
- "en-GB"

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <language>

SCORM Requirements: The multiplicity requirements for the <language> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <language> element is represented as a CharacterString element. The CharacterString has an SPM of 100 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-7

4.2.2.4. <description> Element

The <description> element represents a textual description of the SCORM Content Model Component being described by the meta-data. The Description element allows for a narrative description of the component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <description>

SCORM Requirements: The multiplicity requirements for the <description> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	1 or More (SPM 10)
Activity	1 or More (SPM 10)
SCO	1 or More (SPM 10)
Asset	1 or More (SPM 10)

Data Type: The <description> element is represented as a LangString element. The LangString has an SPM of 2000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Example:

Code Illustration 4-8

4.2.2.5. <keyword> Element

The <keyword> element shall be used to define common keywords or phrases that describe the learning object. When creating keyword(s) the creator should pick words or phrases that are very succinct and specific to the SCORM component. The Keyword element consists of one word or phrase. If more than one Keyword is desired, the creator should use multiple instances of the Keyword element.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <keyword>

SCORM Requirements: The multiplicity requirements for the <keyword> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
	-
Content Aggregation	0 or More (SPM 10)
Content Organization	1 or More (SPM 10)
Activity	1 or More (SPM 10)
SCO	1 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <keyword> element is represented as a LangString element. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Example:

Code Illustration 4-9

4.2.2.6. <coverage> Element

The <coverage> element shall be used to describe the time, culture, geography or region to which the SCORM Content Model Component applies.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <coverage>

SCORM Requirements: The multiplicity requirements for the <coverage> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <coverage> element is represented as a LangString element. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Example:

Code Illustration 4-10

4.2.2.7. <structure> Element

The <structure> element shall describe the underlying organizational structure of the SCORM Content Model Component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <structure>

SCORM Requirements: The multiplicity requirements for the <structure> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <structure> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <structure> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- atomic: an object that is indivisible
- collection: a set of objects with no specified relationship between them
- networked: a set of objects with relationships that are unspecified
- hierarchical: a set of objects whose relationships can be represented by a tree structure
- linear: a set of objects that are fully ordered. Example: A set of objects that are connected by "previous" and "next" relationships.

Example:

Code Illustration 4-11

4.2.2.8. <a gregationLevel> Element

The <aggregationLevel> element shall describe the functional granularity of the learning object.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <aggregationLevel>

SCORM Requirements: The multiplicity requirements for the <aggregationLevel> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <aggregationLevel> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <aggregationLevel> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- 1: the smallest level of aggregation, e.g., raw media data or fragments.
- 2: a collection of level 1 learning objects, e.g., a lesson.
- 3: a collection of level 2 learning objects, e.g., a course
- 4: the largest level of granularity, e.g., a set of courses that lead to a certificate

Code Illustration 4-12

4.2.3. 4.2.5 Element

The Life Cycle category groups the features related to the history and current state of the SCORM Content Model Component and those who have affected the component during its evolution. The typical types of information collected in this category include the status of the component (e.g., is the component in its final state or is it still in a draft format), a version identifier indicating the version of the component and a list of individuals/organizations that have affected the component in one manner or another.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: feCycle>

SCORM Requirements: The multiplicity requirements for the lifeCycle> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	0 or 1

Data Type: The lifeCycle> element is a parent element. Parent elements have no
values associated with them. Parent elements act as "containers" for other elements. The
lifeCycle> element contains the following child elements:

- < <version>
- <status>
- < <contribute>

```
<1om>
  clifeCycle>
      <version>
         <string language="en">1.0 alpha</string>
      </version>
      <status>
         <source>LOMv1.0</source>
         <value>final</value>
      </status>
      <contribute>
         <role>
            <source>LOMv1.0
            <value>author</value>
         </role>
         <entity>BEGIN:VCARD\nFN:Joe FridayEND:VCARD</entity>
         <date>
            <dateTime>2002-12-12</dateTime>
            <description>
               <string language="en">A description for the date/string>
            </description>
         </date>
      </contribute>
  </lifeCycle>
</lom>
```

Code Illustration 4-13

4.2.3.1. <version> Element

The <version> element shall describe the edition of the SCORM Content Model
Component. A component may have several versions or editions during its lifetime. The
<version> element allows for the description of the version of the component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <version>

SCORM Requirements: The multiplicity requirements for the <version> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	0 or 1

Code Illustration 4-14

4.2.3.2. <status> Element

The <status> element shall describe the completion status or condition of the SCORM Content Model Component. A component may have several statuses during its lifetime (draft, final, etc...). The <status> element allows for the description of the status of the component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <status>

SCORM Requirements: The multiplicity requirements for the <status> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	0 or 1

Data Type: The <status> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <status> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- draft: the component is in a draft state (as determined by the developer)
- final: the component is in a final state (as determined by the developer)
- revised: the component has been revised since the last version
- unavailable: the status information is unavailable

Code Illustration 4-15

4.2.3.3. <contribute> Element

The <contribute> element shall be used to describe those entities (i.e., people, organizations) that have contributed to the state of the SCORM Content Model Component during its lifecycle (e.g., creation, edits, reviews, publications, etc). The Contribute element enables capturing of all those individuals or organizations involved.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <contribute>

SCORM Requirements: The multiplicity requirements for the <contribute> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 30)
Content Organization	0 or More (SPM 30)
Activity	0 or More (SPM 30)
SCO	0 or More (SPM 30)
Asset	0 or More (SPM 30)

If the <contribute> element is used, SCORM requires the use of the <role> and <entity> element. These element describes what role and what entity was involved with the contribution.

Data Type: The <contribute> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <contribute> element contains the following child elements:

- <role> mandatory if a <contribute> element is used
- <entity> mandatory if a <contribute> element is used
- <date> optional if a <contribute> element is used

```
<1om>
   feCycle>
      <contribute>
         <role>
            <source>LOMv1.0</source>
            <value>author</value>
         </role>
         <entity>BEGIN:VCARD\nFN:Joe FridayEND:VCARD</entity>
            <dateTime>2002-12-12</dateTime>
            <description>
               <string language="en">A description for the date/string>
            </description>
         </date>
      </contribute>
   </lifeCycle>
</lom>
```

Code Illustration 4-16

4.2.3.3.1. <role> Element

The <role> element defines the kind or type of contribution made by the contributor (identified by the Entity element). The IEEE has defined a set of typical roles that are involved with the lifecycle of the component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <role>

SCORM Requirements: The multiplicity requirements for the <rol>
 element are
defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

If the <contribute> element is used, SCORM requires the use of the <role> element. The <role> element describes the role the contributor played in the development of the SCORM Content Model Component.

Data Type: The <role> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <role> element as a Best Practice Vocabulary element. SCORM does not require the use of the vocabulary defined by IEEE 1484.12.1-2002. SCORM, however, does recommend the use of the values as best practice. The valid set of tokens defined by IEEE is:

- author
- publisher
- unknown
- initiator
- terminator
- validator
- editor
- graphical designer
- technical implementer
- content provider
- technical validator
- educational validator
- script writer
- instructional designer
- subject matter expert

Code Illustration 4-17

4.2.3.3.2. <entity> Element

The <entity> element identifies the entity or entities that may have contributed during the development lifecycle of the SCORM Content Model Component. An entity can be an individual person, organization, etc. If more than one entity is listed, the entities shall be ordered as most relevant first.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <entity>

SCORM Requirements: The multiplicity requirements for the <entity> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 40)
Content Organization	0 or More (SPM 40)
Activity	0 or More (SPM 40)
SCO	0 or More (SPM 40)
Asset	0 or More (SPM 40)

If the <contribute> element is used, SCORM requires the use of the <entity> element. The <entity> element describes who was involved with the development of the SCORM Content Model Component.

Data Type: The <entity> element is a CharacterString element. The CharacterString has an SPM of 1000 characters. (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information). All entity values shall be represented in vCard [9] format. This allows systems to take the CharacterString represented by the <entity> element and process this CharacterString as a valid vCard.

Example:

```
<lom>
   feCycle>
      <contribute>
         <role>
            <source>LOMv1.0
            <value>author</value>
         </role>
        <entity>BEGIN:VCARD\nFN:Joe AuthorEND:VCARD</entity>
        <entity>BEGIN:VCARD\nFN:Mary AuthorEND:VCARD</entity>
            <dateTime>2002-12-12</dateTime>
            <description>
              <string language="en">A description for the date</string>
            </description>
         </date>
      </contribute>
   </lifeCycle>
</lon>
```

Code Illustration 4-18

4.2.3.3.3. <date> Element

The <date> element identifies the date of the contribution made by the entity.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <date>

SCORM Requirements: The multiplicity requirements for the <date> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The Date element is represented as a DateTime data type (Refer to Section 4.2.11.4: *DateTime Data Type* for more information). The <date> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <date> element contains two elements, one that represents the actual date of the contribution (<dateTime>) and one that represents a textual description of the date (<description>):

- <dateTime>
- <description>

Example:

```
<1om>
   lifeCycle>
      <contribute>
         <role>
            <source>LOMv1.0</source>
            <value>author</value>
         </role>
         <entity>BEGIN:VCARD\nFN:Joe AuthorEND:VCARD</entity>
         <entity>BEGIN:VCARD\nFN:Mary AuthorEND:VCARD</entity>
            <dateTime>2002-12-12</dateTime>
            <description>
               <string language="en">This date represents the date the author
finished authoring the component.</string>
            </description>
         </date>
      </contribute>
   </lifeCycle>
</lom>
```

Code Illustration 4-19

4.2.4. <metaMetadata> Element

The Meta-Metadata category provides elements that describe the meta-data record itself and not the SCORM Content Model Component the record is describing. This category describes how the meta-data instance itself can be identified, who created the meta-data instance, how, when and with what references.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <metaMetadata>

SCORM Requirements: The multiplicity requirements for the <metaMetadata> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

Data Type: The <metaMetadata> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <metaMetadata> element contains the following child elements:

- <identifier>
- <contribute>
- <metadataSchema>
- <language>

```
<1om>
   <metaMetadata>
      <identifier>
         <catalog>URI</catalog>
         <entry>http://www.adlnet.org/metadata/MDO_01</entry>
      </identifier>
      <contribute>
         <role>
            <source>LOMv1.0</source>
            <value>creator</value>
         <entity>BEGIN:VCARD\nFN:Joe Metadata CreatorEND:VCARD</entity>
         <date>
            <dateTime>2002-12-12</dateTime>
            <description>
               <string language="en">This date represents the date the creator
finished authoring the metadata.</string>
            </description>
         </date>
      </contribute>
      <metadataSchema>LOMv1.0</metadataSchema>
      <metadataSchema>SCORM_CAM_v1.3</metadataSchema>
      <language>en</language>
   </metaMetadata>
</lon>
```

Code Illustration 4-20

4.2.4.1. <identifier> Element

The <identifier> element represents a mechanism for assigning a globally unique label that identifies the meta-data record that describes the SCORM Content Model Component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <identifier>

SCORM Requirements: The multiplicity requirements for the <identifier> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	1 or More (SPM 10)
Activity	1 or More (SPM 10)
SCO	1 or More (SPM 10)
Asset	1 or More (SPM 10)

Data Type: The <identifier> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <identifier> element contains the following child elements:

- <catalog> optional
- <entry> mandatory

Code Illustration 4-21

4.2.4.1.1. <catalog> Element

The <catalog> element represents the name or designator of the identification or cataloging scheme for the entry. There are a variety of cataloging systems available. SCORM does not require the use of any one particular cataloging system. Organizations are free to choose any cataloging scheme that meets their organizations practices or policies. Some types of Cataloging systems are:

- Universal Resource Identifier (URI)
- Universal Resource Name (URN)
- Digital Object Identifier (DOI)
- International Standard Book Numbers (ISBN)
- International Standard Serial Numbers (ISSN)

The <catalog> element represents the scheme used to create and manage the entry.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <catalog>

SCORM Requirements: The multiplicity requirements for the <catalog> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

SCORM recommends the use of the <catalog> element to describe the catalog or identification system for the <entry> element.

Data Type: The <catalog> element is represented as a CharacterString element. The CharacterString has an SPM of 1000 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-22

4.2.4.1.2. <entry> Element

The <entry> element represents the value of the identifier within the identification or cataloging scheme (see <catalog> element) that designates or identifies the meta-data.

Identifiers can take on various formats. The IEEE requires that the actual identifier value be represented as a CharacterString. Organizations are free to choose any mechanism to create unique identifiers that meets their organizations practices or policies. It is recommended that a common scheme be chosen.

The following listing is a sampling of identifier values (entry):

Scheme (<catalog>)</catalog>	Value (<entry>)</entry>
Universal Resource Name	urn:ADL: 1345-GFGC-23ED-3321
Universal Resource Identifier	http://www.adlnet.org/content/C0_01
ADL Registry	2134-RF43-3233-FRI9-ACDA

<u>ADL Note:</u> ADL Registry does not exist. This is just an example of one type of registry system that may exist.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <entry>

SCORM Requirements: The multiplicity requirements for the <entry> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

SCORM places a requirement that the <entry> element shall be present. The actual value used to identify the meta-data describing the learning resource.

Data Type: The <entry> element is represented as a CharacterString element. The CharacterString has an SPM of 1000 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-23

4.2.4.2. <contribute> Element

The <contribute> element shall be used to describe those entities (i.e., people, organizations) that have affected the state of the meta-data (not the SCORM Content Model Component being described) instance during its development lifecycle. The <contribute> element enables capturing of all those individuals or organizations involved.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <contribute>

SCORM Requirements: The multiplicity requirements for the <contribute> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 30)
Content Organization	0 or More (SPM 30)
Activity	0 or More (SPM 30)
SCO	0 or More (SPM 30)
Asset	0 or More (SPM 30)

If the <contribute> element is used, SCORM requires the use of the <role> and <entity> element. These element describes what role and what entity was involved with the contribution.

Data Type: The <contribute> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <contribute> element contains the following child elements:

• <role> - mandatory if a <contribute> element is used

- <entity> mandatory if a <contribute> element is used
- <date> optional if a <contribute> element is used

```
<1om>
   <metaMetadata>
      <contribute>
         <role>
            <source>LOMv1.0</source>
            <value>creator</value>
         </role>
         <entity>BEGIN:VCARD\nFN:Joe Metadata CreatorEND:VCARD</entity>
         <date>
            <dateTime>2002-12-12</dateTime>
            <description>
               <string language="en">This date represents the date the creator
finished authoring the metadata.</string>
            </description>
         </date>
      </contribute>
   </metaMetadata>
</lon>
```

Code Illustration 4-24

4.2.4.2.1. <role> Element

The <role> element defines the kind or type of contribution made by the contributor (identified by the Entity element). The IEEE has defined a set of typical roles that are involved with the development lifecycle of the meta-data instance.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <role>

SCORM Requirements: The multiplicity requirements for the <rol>
 element are
defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

If the <contribute> element is used, SCORM requires the use of the <entity> element. The <entity> element describes who was involved with the development of the SCORM Content Model Component.

Data Type: The <role> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <role> element as a Best Practice Vocabulary element. SCORM does not require the use of the vocabulary defined by IEEE 1484.12.1-2002. SCORM, however, does recommend the use of the values as best practice. The valid set of tokens defined by IEEE is:

- creator
- validator

Example:

```
<1om>
   <metaMetadata>
      <contribute>
         <role>
            <source>LOMv1.0</source>
            <value>creator</value>
         </role>
         <entity>BEGIN:VCARD\nFN:Joe Metadata CreatorEND:VCARD</entity>
            <dateTime>2002-12-12</dateTime>
            <description>
               <string language="en">This date represents the date the creator
finished authoring the metadata.</string>
            </description>
         </date>
      </contribute>
   </metaMetadata>
</lom>
```

Code Illustration 4-25

4.2.4.2.2. <entity> Element

The <entity> element identifies the entity or entities that may have contributed during the development lifecycle of the meta-data instance. An entity can be an individual person, organization, etc. If more than one entity is listed, the entities shall be ordered as most relevant first.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <entity>

SCORM Requirements: The multiplicity requirements for the <entity> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 40)
Content Organization	0 or More (SPM 40)
Activity	0 or More (SPM 40)
SCO	0 or More (SPM 40)
Asset	0 or More (SPM 40)

If the <contribute> element is used, SCORM recommends the use of the <entity> element. The <entity> element describes who was involved with the development of the meta-data.

Data Type: The <entity> element as a CharacterString element. The CharacterString has an SPM of 1000 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information). All entity values shall be represented in vCard [9] format. This allows systems to take the CharacterString represented by the <entity> element and process this CharacterString as a valid vCard.

Example:

```
<1om>
   <metaMetadata>
      <contribute>
         <role>
            <source>LOMv1.0
            <value>creator</value>
         <entity>BEGIN:VCARD\nFN:Joe Metadata CreatorEND:VCARD</entity>
         <date>
            <dateTime>2002-12-12</dateTime>
            <description>
               <string language="en">This date represents the date the creator
finished authoring the metadata.</string>
            </description>
         </date>
      </contribute>
   </metaMetadata>
</lon>
```

Code Illustration 4-26

4.2.4.2.3. <date> Element

The <date> element identifies the date of the contribution made by the entity.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <date>

SCORM Requirements: The multiplicity requirements for the <date> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The Date element is represented as a DateTime (Refer to Section 4.2.11.4: *DateTime Data Type* for more information). The <date> element is a parent element.

Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <date> element contains two elements, one that represents the actual date of the contribution (<dateTime>) and one that represents a textual description of the date (<description>):

- <dateTime>
- <description>

Example:

```
<1om>
   <metaMetadata>
      <contribute>
         <role>
            <source>LOMv1.0
            <value>creator</value>
         </role>
         <entity>BEGIN:VCARD\nFN:Joe Metadata CreatorEND:VCARD</entity>
         <date>
            <dateTime>2002-12-12</dateTime>
            <description>
               <string language="en">This date represents the date the creator
finished authoring the metadata.</string>
            </description>
         </date>
      </contribute>
   </metaMetadata>
</lon>
```

Code Illustration 4-27

4.2.4.3. <metadataSchema> Element

The <metadataSchema> element represents the name and version of the authoritative specification used to create the meta-data instance. If multiple values are provided, then the meta-data instance shall conform to multiple metadata schemas.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <metadataSchema>

SCORM Requirements: The meta-data instances for all of the SCORM Meta-data must conform to both the conformance requirements of the LOM and the SCORM CAM Version 1.3. Because of this SCORM requires at least the following meta-data schemas to be documented in all meta-data instances:

- LOM Version 1.0
- SCORM CAM Version 1.3

SCORM requires the use of the following strings to represent the two identified metadata schemas:

• LOMV1.0: Indicates that the LOM Version 1.0 Base Schema elements were used.

• SCORM_CAM_v1.3: Indicates that a SCORM CAM Version 1.3 Meta-data Application Profile was followed

If more meta-data schemas are relevant, those should also be listed. However they are not required for SCORM CAM Version 1.3.

The multiplicity requirements for the <metadataSchema> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	2 or More (SPM 10)
Content Organization	2 or More (SPM 10)
Activity	2 or More (SPM 10)
SCO	2 or More (SPM 10)
Asset	2 or More (SPM 10)

Data Type: The <metadataSchema> element is represented as a CharacterString element. The CharacterString has an SPM of 30 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-28

4.2.4.4. <language> Element

The <language > element represents the language of the meta-data instance (i.e., the language of all values found in LangStrings). This value represents the default language for all LangStrings. If a value for this data element is not present in a meta-data instance, then there is no default language for LangString values. If this value is provided it is not necessary to indicate a language value for LangString elements.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <language>

SCORM Requirements: The multiplicity requirements for the <language> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1

Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <language> element is represented as a CharacterString element. The CharacterString has an SPM of 100 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-29

4.2.5. <technical> Element

The Technical category describes all of the technical characteristics and requirements of the SCORM Content Model Component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <technical>

SCORM Requirements: The multiplicity requirements for the <technical> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

Data Type: The <technical> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <technical> element contains the following child elements:

- <format>
- <size>
- <location>
- < <requirement>
- <installationRemarks>
- <otherPlatformRequirements>
- <duration>

```
<1om>
      <format>text/html</format>
      <size>1024</size>
      <location>Lesson01/Module01/Resources/SCO01.htm</location>
      <reguirement>
         <orComposite>
            <type>
               <source>LOMv1.0</source>
               <value>browser</value>
            <name>
               <source>LOMv1.0</source>
               <value>ms-internet explorer</value>
            <minimumVersion>5.0</minimumVersion>
            <maximumVersion>6.0</maximumVersion>
         </orComposite>
      </requirement>
      <installationRemarks>
         <string language="en">This activity requires the client browser to
have a Macromedia Flash plugin installed.</string>
      </installationRemarks>
      <otherPlatformRequirements>
         <string language="en">Sound card, Min. RAM: 16Mb, Video card and
display: at least 800 X 600 pixels x 256 colors</string>
      </otherPlatformRequirements>
      <duration>
         <duration>P5Y</duration>
         <description>
            <string language="en">Length of time to play simulation/string>
         </description>
      </duration>
   </technical>
</lon>
```

Code Illustration 4-30

4.2.5.1. <format> Element

The <format> element represents the technical datatype(s) of all of the components used in the makeup of the SCORM Content Model Component. This element is used to identify any potential software needs to access and use the component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <format>

SCORM Requirements: The multiplicity requirements for the <format> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 40)
Content Organization	1 or More (SPM 40)

Activity	1 or More (SPM 40)
SCO	1 or More (SPM 40)
Asset	1 or More (SPM 40)

Data Type: The <format> element is represented as a CharacterString element. The CharacterString has an SPM of 500 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information). The CharacterString shall be a MIME type based on IANA registration (see RFC 2048:1996) or the string literal, "non-digital".

Example:

Code Illustration 4-31

4.2.5.2. <size> Element

The <size> element represents the size of the digital SCORM Content Model Component in bytes. The size is represented as a decimal value (radix 10). Only the digits "0" through "9" should be used. This data element shall refer to the actual size of the SCORM Component. If the component is compressed, then this data element shall refer to the uncompressed size. When determining the size of the component, the following is provided as a recommended best practice:

- Content Aggregation: The size of the content package (i.e., Content Aggregation). If the package is compressed into a PIF, this size should indicate the compressed size. If the package is not compressed, then the size should reflect the size of all of the files in the package (i.e., the accumulation of all of the file sizes)
- Content Organization: The size of the content organization. This size should reflect only the size of the content organization (e.g., course, lesson or whatever the content organization represents). This size may be different than the package size, because there may be files that are needed by the package (i.e., control files needed for manifest validation) that are not necessarily reflected in the content organization.
- Activity: The size of the activity (represented in imsmanifest.xml file as an <organization> or <item> element). This size should only reflect the files involved in the makeup of the activity. The size of the activity depends on whether the activity being described is composed of other activities or if the activity is a standalone activity.
- SCO: The size of the SCO. This size is reflected in the size of the resource representing the SCO. This would include all supporting files used in the makeup of the SCO.
- Asset: The size of the Asset being described.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <size>

SCORM Requirements: The multiplicity requirements for the <size> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <size> element is represented as a CharacterString element. The CharacterString has an SPM of 30 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-32

4.2.5.3. < location > Element

The <location> element is a string that specifies the location of the SCORM Content Model Component described by the meta-data.

The use of the <location> element is not recommended in SCORM meta-data since the location information required for delivery or disaggregation of the content of the package is provided by the URLs in the href attribute for <resource> and <file> elements in the manifest.

This element could be used to describe one or more alternate locations where the SCORM Content Model Component can also be found, in addition to the content package itself (e.g., a known fixed location).

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <location>

SCORM Requirements: The multiplicity requirements for the <location> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <location> element is represented as a CharacterString element. The CharacterString has an SPM of 1000 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-33

4.2.5.4. <requirement> Element

The <requirement> element expresses the technical capabilities necessary for using the SCORM Content Model Component. The <requirement> element is repeatable. If multiple requirements are needed then all of the requirements are required (logical connector is an AND).

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <requirement>

SCORM Requirements: The multiplicity requirements for the <requirement> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 40)
Content Organization	0 or More (SPM 40)
Activity	0 or More (SPM 40)
SCO	0 or More (SPM 40)
Asset	0 or More (SPM 40)

Data Type: The requirement> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The crequirement> element contains the following child elements:

<orComposite>

```
<1om>
   <technical>
      <requirement>
         <orComposite>
            <type>
               <source>LOMv1.0</source>
               <value>browser</value>
            </type>
            <name>
               <source>LOMv1.0</source>
               <value>ms-internet explorer</value>
            <minimumVersion>5.0</minimumVersion>
            <maximumVersion>6.0</maximumVersion>
         </orComposite>
      </requirement>
   </technical>
</lon>
```

Code Illustration 4-34

4.2.5.4.1. <orComposite> Element

The <orComposite> element represents a single requirement. Multiple <orComposite> elements are connected with a logical connecter of "or".

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <orComposite>

SCORM Requirements: The multiplicity requirements for the <orcomposite> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 40)
Content Organization	0 or More (SPM 40)
Activity	0 or More (SPM 40)
SCO	0 or More (SPM 40)
Asset	0 or More (SPM 40)

Data Type: The <orcomposite> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <orcomposite> element contains the following child elements:

- <type>
- <name>
- <minimumVersion>
- <maximumVersion>

Example: The following meta-data indicates that the component being described will execute in either of the following Web browsers:

- Microsoft Internet Explorer
 - o Minimum Version: 5.0
 - o Maximum Version 6.0

or

- Netscape Communicator
 - o Minimum Version: 4.7.9
 - o Maximum Version 5.0

```
<1om>
  <technical>
      <requirement>
        <orComposite>
            <type>
               <source>LOMv1.0</source>
               <value>browser</value>
            </type>
            <name>
               <source>LOMv1.0
               <value>ms-internet explorer</value>
            </name>
            <minimumVersion>5.0</minimumVersion>
            <maximumVersion>6.0</maximumVersion>
        </orComposite>
        <orComposite>
            <tvpe>
               <source>LOMv1.0
               <value>browser</value>
            </type>
            <name>
               <source>LOMv1.0</source>
               <value>netscape communicator</value>
            </name>
            <minimumVersion>4.7.9</minimumVersion>
            <maximumVersion>5.0</maximumVersion>
        </orComposite>
      </requirement>
  </technical>
</lom>
```

Code Illustration 4-35

4.2.5.4.1.1. <type> Element

The <type> element represents the technology required to use the SCORM Content Model Component (e.g., hardware, software, network, etc.).

It is a recommended best practice that if the meta-data instance contains a <type> element that a corresponding <name> element should exist to describe more details about the type.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <type>

SCORM Requirements: The multiplicity requirements for the <type> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <type> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <type> element as a Best Practice Vocabulary element. SCORM does not require the use of the vocabulary defined by IEEE 1484.12.1-2002. SCORM, however, does recommend the use of the values as best practice. The valid set of tokens defined by IEEE is:

- operating system
- browser

Example:

```
<1om>
   <technical>
      <requirement>
         <orComposite>
            <type>
               <source>LOMv1.0</source>
               <value>browser</value>
           </type>
               <source>LOMv1.0
               <value>ms-internet explorer</value>
            <minimumVersion>5.0</minimumVersion>
            <maximumVersion>6.0</maximumVersion>
         </orComposite>
     </requirement>
   </technical>
</lom>
```

Code Illustration 4-36

4.2.5.4.1.2. <name> Element

The <name> element represents the required technology to use the SCORM Content Model Component. The value used for the Name element depends on the value identified by the Value element.

It is a recommended best practice that if the meta-data instance contains a <name> element that a corresponding <type> element should exist to describe more details about the required technology.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <name>

SCORM Requirements: The multiplicity requirements for the <name> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <name> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <name> element as a Best Practice Vocabulary element. SCORM does not require the use of the vocabulary defined by IEEE 1484.12.1-2002. SCORM, however, does recommend the use of the values as best practice. The valid set of tokens defined by IEEE is:

If Requirement.OrComposite.Type = "operating system":

- pc-dos
- ms-windows
- macos
- unix
- multi-os
- none

If Requirement.OrComposite.Type = "browser":

- anv
- netscape communicator
- ms-internet explorer
- opera
- amaya

```
<1om>
   <technical>
      <requirement>
         <orComposite>
            <type>
               <source>LOMv1.0
               <value>browser</value>
            </type>
            <name>
               <source>LOMv1.0</source>
               <value>ms-internet explorer</value>
            <minimumVersion>5.0</minimumVersion>
            <maximumVersion>6.0</maximumVersion>
         </orComposite>
     </requirement>
  </technical>
</lon>
```

Code Illustration 4-37

4.2.5.4.1.3. <minimumVersion> Element

The <minimumVersion> element represents the lowest possible version of the required technology to use the SCORM Content Model Component. The required technology that the Minimum Version represents is described by <name> and <value> elements.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <minimumVersion>

SCORM Requirements: The multiplicity requirements for the <minimumVersion> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <minimumVersion> element is represented as a CharacterString. The CharacterString has an SPM of 30 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

```
<1om>
  <technical>
      <requirement>
         <orComposite>
            <type>
               <source>LOMv1.0</source>
               <value>browser</value>
            </type>
            <name>
               <source>LOMv1.0
               <value>ms-internet explorer</value>
            <minimumVersion>5.0</minimumVersion>
            <maximumVersion>6.0</maximumVersion>
         </orComposite>
      </requirement>
  </technical>
</lon>
```

Code Illustration 4-38

4.2.5.4.1.4. <maximumVersion> Element

The <maximumVersion> element represents the highest possible version of the required technology to use the SCORM Content Model Component. The required technology that the Maximum Version represents is described by <name> and <value> elements.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <maximumVersion>

SCORM Requirements: The multiplicity requirements for the <maximumVersion> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <maximumVersion> element is represented as a CharacterString. The CharacterString has an SPM of 30 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

```
<1om>
   <technical>
      <requirement>
         <orComposite>
            <type>
               <source>LOMv1.0</source>
               <value>browser</value>
            </type>
            <name>
               <source>LOMv1.0
               <value>ms-internet explorer</value>
            <minimumVersion>5.0</minimumVersion>
            <maximumVersion>6.0</maximumVersion>
         </orComposite>
     </requirement>
  </technical>
</lon>
```

Code Illustration 4-39

4.2.5.5. <installationRemarks> Element

The <installationRemarks> element is used to represent any specific instructions on how to install the SCORM Content Model Component. This element could be used to describe to the user (e.g., LMS, Content Developer, Authoring Tool) of the component any particular instructions for use. It may be used to describe, in more detail, the technical requirements for the SCORM component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <installationRemarks>

SCORM Requirements: The multiplicity requirements for the <installationRemarks> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <installationRemarks> element is represented as a LangString. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Code Illustration 4-40

4.2.5.6. <otherPlatformRequirements> Element

The <otherPlatformRequirements> element is used to represent information about other software and hardware requirements of the SCORM Content Model Component. This element should be used to describe requirements that cannot be represented or expressed with the other Technical elements.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <otherPlatformRequirements>

SCORM Requirements: The multiplicity requirements for the

<otherPlatformRequirements> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <otherPlatformRequirements> element is represented as a LangString. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Example:

Code Illustration 4-41

4.2.5.7. <duration> Element

The <duration> element represents the time a continuous SCORM Content Model Component takes when played at intended speed. This element is useful for sounds, movies or simulations.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <duration>

SCORM Requirements: The multiplicity requirements for the <duration> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <duration> element is represented as a Duration data type(Refer to Section 4.2.11.5: *Duration Data Type* for more information).

Example:

Code Illustration 4-42

4.2.6. <educational> Element

The Educational category describes the key educational or pedagogic characteristics of the SCORM Content Model Component. This category allows for the description of the educational characteristics and is typically used by teachers, managers, authors and learners.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <educational>

SCORM Requirements: The multiplicity requirements for the <educational> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 100)
Content Organization	0 or More (SPM 100)
Activity	0 or More (SPM 100)
SCO	0 or More (SPM 100)
Asset	0 or More (SPM 100)

Data Type: The <educational> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <educational> element contains the following child elements:

- <interactivityType>
- <learningResourceType>
- <interactivityLevel>
- <semanticDensity>
- <intendedEndUserRole>
- <context>
- <typicalAgeRange>
- <difficulty>
- <typicalLearningTime>
- <description>
- <language>

```
<1om>
   <educational>
      <interactivityType>
         <source>LOMv1.0</source>
         <value>mixed</source>
      </interactivityType>
      <learningResourceType>
         <source>LOMv1.0</source>
         <value>figure</source>
      </learningResourceType>
      <learningResourceType>
         <source>LOMv1.0</source>
         <value>narrative text</source>
      </learningResourceType>
      <interactivityLevel>
         <source>LOMv1.0</source>
         <value>very low</value>
      </interactivityLevel>
      <semanticDensity>
         <source>LOMv1.0</source>
         <value>very low</value>
      </semanticDensity>
      <intendedEndUserRole>
         <source>LOMv1.0</source>
         <value>learner</value>
      </intendedEndUserRole>
      <context>
         <source>LOMv1.0</source>
         <value>training</value>
      </context>
      <typicalAgeRange>
         <string language="en">18-</string>
      </typicalAgeRange>
      <difficulty>
         <source>LOMv1.0</source>
         <value>easy</value>
      </difficulty>
      <duration>
         <duration>PT1H30M</duration>
         <description>
            <string language="en">Average length of time to experience the
activity.</string>
         </description>
      </duration>
      <language>en-US</language>
   </educational>
</lon>
```

Code Illustration 4-43

4.2.6.1. <interactivityType> Element

The <interactivityType> element represents the dominant mode of learning supported by the SCORM Content Model Component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <interactivityType>

SCORM Requirements: The multiplicity requirements for the <interactivityType> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <interactivityType> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <interactivityType> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- active: Active learning (e.g., learning by doing) is supported by content that directly induces productive action by the learner.
- expositive: Expositive learning (e.g., passive learning) occurs when the learner's job mainly consists of absorbing the content exposed to them.
- mixed: A blend of active and expositive interactivity types.

Example:

Code Illustration 4-44

4.2.6.2. < learningResourceType> Element

The <learningResourceType> element represents the specific kind of the SCORM Content Model Component. This element is repeatable in order to fully describe the types of resources used in the component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <learningResourceType>

SCORM Requirements: The multiplicity requirements for the <learningResourceType> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <learningResourceType> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <learningResourceType> element as a Best
Practice Vocabulary element. SCORM does not require the use of the vocabulary
defined by IEEE 1484.12.1-2002. SCORM, however, does recommend the use of the
values as best practice. The valid set of tokens defined by IEEE is:

- exercise
- simulation
- questionnaire
- diagram
- figure
- graph
- index
- slide
- table
- narrative text
- exam
- experiment
- problem statement
- self assessment
- lecture

Example:

Code Illustration 4-45

4.2.6.3. <interactivityLevel> Element

The <interactivityLevel> represents the degree of interactivity characterizing the SCORM Content Model Component. Interactivity in this context refers to the degree to which the learner can influence the aspect or behavior of the component.

XML Namespace Prefix: 1om

XML Binding Representation: <interactivityLevel>

SCORM Requirements: The multiplicity requirements for the <interactivityLevel> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <interactivityLevel> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <interactivityLevel> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- very low
- low
- medium
- high
- very high

These values, inherently, are meaningful only in a context of a community practice. At this time the ADL Community has not defined this scale. If the ADL Community wishes to define this scale, this information should be brought forward to the ADL Technical Team. At this time, this scale is left to organizations to define.

Example:

Code Illustration 4-46

4.2.6.4. <semanticDensity> Element

The <semanticDensity> represents the degree of conciseness of the SCORM Content Model Component. The semantic density of a SCORM component may be estimated in terms of its size, span or, in the case of self-timed resources such as audio or video, duration.

XML Namespace Prefix: 1om

XML Binding Representation: <semanticDensity>

SCORM Requirements: The multiplicity requirements for the <semanticDensity> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <semanticDensity> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <semanticDensity> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- very low
- low
- medium
- high
- very high

These values, inherently, are meaningful only in a context of a community practice. At this time the ADL Community has not defined this scale. If the ADL Community wishes to define this scale, this information should be brought forward to the ADL Technical Team. At this time, this scale is left to organizations to define.

Example:

Code Illustration 4-47

4.2.6.5. <intendedEndUserRole> Element

The <intendedEndUserRole> element represents the principal user(s) for which the SCORM Content Model Component was designed. If multiple elements are used, the most dominant role should be first.

XML Namespace Prefix: 1om

XML Binding Representation: <intendedEndUserRole>

SCORM Requirements: The multiplicity requirements for the <intendedEndUserRole> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <intendedEndUserRole> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <intendedEndUserRole> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- teacher
- author
- learner
- manager

Example:

Code Illustration 4-48

4.2.6.6. <context> Element

The <context> element represents the principal environment within which the learning and use of the SCORM Content Model Component is intended to take place.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <context>

SCORM Requirements: The multiplicity requirements for the <context> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <context> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <context> element as a Best Practice Vocabulary element. SCORM does not require the use of the vocabulary defined by IEEE 1484.12.1-2002. SCORM, however, does recommend the use of the values as best practice. The valid set of tokens defined by IEEE is:

- school
- higher education
- training
- other

Example:

Code Illustration 4-49

4.2.6.7. <typicalAgeRange> Element

The <typicalAgeRange> element represents the age of the typical end user. This element shall refer to the developmental age, if that would be different from the chronological age. The IEEE Standard recommends that when applicable, the value should be formatted as *minimum age – maximum age* or *minimum age –* (e.g., 18 – 25, or 18-). The values of this element do not necessarily have to be represented numerically (e.g., adults only, suitable for children over 7).

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <typicalAgeRange>

SCORM Requirements: The multiplicity requirements for the <typicalAgeRange> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 5)
Content Organization	0 or More (SPM 5)
Activity	0 or More (SPM 5)
SCO	0 or More (SPM 5)
Asset	0 or More (SPM 5)

Data Type: The <typicalAgeRange> element is represented as a LangString. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Example:

Code Illustration 4-50

4.2.6.8. <difficulty> Element

The <difficulty> element represents how hard it is to work with or through the SCORM Content Model Component for the typical intended target audience. The typical target audience can be characterized by the <context> and <typicalAgeRange> elements.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <difficulty>

SCORM Requirements: The multiplicity requirements for the <difficulty> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <difficulty> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <difficulty> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- very easy
- easy
- medium
- difficult
- very difficult

These values, inherently, are meaningful only in a context of a community practice. At this time the ADL Community has not defined this scale. If the ADL Community wishes to define this scale, this information should be brought forward to the ADL Technical Team. At this time, this scale is left to organizations to define.

Example:

Code Illustration 4-51

4.2.6.9. <typicalLearningTime> Element

The <typicalLearningTime> element represents the approximate of typical time it takes to work with or through the SCORM Content Model Component for the typical intended target audience. The typical target audience can be characterized by the elements <context> and <typicalAgeRange>.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <typicalLearningTime>

SCORM Requirements: The multiplicity requirements for the <typicalLearningTime> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <typicalLearningTime> element is represented a Duration (Refer to Section 4.2.11.5: *Duration Data Type* for more information).

Code Illustration 4-52

4.2.6.10. <description> Element

The <description> element shall be used to comment on how the SCORM Content Model Component is to be used.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <description>

SCORM Requirements: The multiplicity requirements for the <description> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <description> element is represented as a LangString. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Code Illustration 4-53

4.2.6.11. < language> Element

The <language> element represents the human language used by the typical intended user of the SCORM Content Model Component. The typical target intended user can be characterized by the elements <context> and <typicalAgeRange>.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <language>

SCORM Requirements: The multiplicity requirements for the <language> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <language> element is represented a CharacterString. The CharacterString has an SPM of 100 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Code Illustration 4-54

4.2.7. <rights> Element

The Rights category describes the intellectual property rights and conditions of use for the SCORM Content Model Component. This element shall be used to describe any and all digital rights of the SCORM Component (cost for use, copyright, etc.).

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <rights>

SCORM Requirements: The multiplicity requirements for the <ri>element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

Data Type: The <rights> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <rights> element contains the following child elements:

- <cost>
- <copyrightAndOtherRestrictions>
- <description>

```
<1om>
   <rights>
      <cost>
        <source>LOMv1.0
         <value>yes</value>
      </cost>
      <copyrightAndOtherRestrictions>
         <source>LOMv1.0</source>
         <value>yes</value>
      </copyrigthAndOtherRestrictions>
      <description>
        <string language="en">For additional information or questions
regarding copyright, distribution and reproduction, contact Joe Developer at
joe_developer@someorganization.org</string>
      </description>
   </rights>
</lon>
```

Code Illustration 4-55

4.2.7.1. <cost> Element

The <cost> element represents whether or not the SCORM Content Model Component requires some sort of payment.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <cost>

SCORM Requirements: The multiplicity requirements for the <cost> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

Data Type: The <cost> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <cost> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- yes
- no

If the <cost> element is set to yes, the <description> element can be used to describe addition details dealing with the cost.

Example:

Code Illustration 4-56

4.2.7.2. <copyrightAndOtherRestrictions> Element

The <copyrightAndOtherRestrictions> element describes whether copyright or other restrictions apply to the use of the SCORM Content Model Component.

XML Namespace Prefix: 1om

XML Binding Representation: <copyrightAndOtherRestrictions>

SCORM Requirements: The multiplicity requirements for the

<copyrightAndOtherRestrictions> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	1 and only 1
Activity	1 and only 1
SCO	1 and only 1
Asset	1 and only 1

Data Type: The <copyrightAndOtherRestrictions> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <copyrightAndOtherRestrictions> element as a Restricted Vocabulary element. SCORM requires the use of the vocabulary defined by IEEE 1484.12.1-2002. The valid set of tokens defined by IEEE is:

- yes
- no

If the <copyrightAndOtherRestrictions> element is set to yes, the <description> element can be used to describe addition details dealing with the copyright and other restrictions.

Example:

Code Illustration 4-57

4.2.7.3. <description> Element

The <description> element allows for comments on the conditions of use of the SCORM Content Model Component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <description>

SCORM Requirements: The multiplicity requirements for the <description> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <description> element is represented as a LangString. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Code Illustration 4-58

4.2.8. <relation> Element

The Relation category defines the relationship between the SCORM Content Model Component and other components, if any. The Relation element is allowed to be repeated. To defined multiple relationships, one could created several instances of this category. If there is more than one target component, then each target shall have a new relationship instance.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <relation>

SCORM Requirements: The multiplicity requirements for the <relation> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 100)
Content Organization	0 or More (SPM 100)
Activity	0 or More (SPM 100)
SCO	0 or More (SPM 100)
Asset	0 or More (SPM 100)

Data Type: The <relation> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <relation> element contains the following child elements:

- <kind>
- <resource>

```
<1om>
   <relation>
      <kind>
         <source>LOMv1.0</source>
         <value>isbasedon</value>
      </kind>
      <resource>
         <identifier>
            <catalog>URN</catalog>
            <entry>urn:ADL:1234-45FD</entry>
         </identifier>
         <description>
            <string language="en">Microsoft MSCE</string>
         </description>
      </resource>
   </relation>
</lom>
```

Code Illustration 4-59

4.2.8.1. <kind> Element

The <kind> element describes the nature of the relationship between the SCORM Content Model Component and the target component identified by the Resource.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <kind>

SCORM Requirements: The multiplicity requirements for the <kind> element are defined in the table below.

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <kind> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <kind> element as a Best Practice Vocabulary element. SCORM does not require the use of the vocabulary defined by IEEE 1484.12.1-2002. SCORM, however, does recommend the use of the values as best practice. The valid set of tokens defined by IEEE is:

- ispartof
- haspart
- isversionof
- hasversion
- isformatof
- hasformat
- references
- isreferencedby
- isbasedon
- isbasisof
- requires
- isrequiredby

```
<1om>
   <relation>
      <kind>
         <source>LOMv1.0</source>
         <value>ispartof</value>
      </kind>
      <resource>
         <identifier>
            <catalog>URN</catalog>
            <entry>urn:ADL:1234-45FD-3324/entry>
         </identifier>
         <description>
            <string language="en">ADL Course: Microsoft MSCE</string>
         </description>
      </resource>
   </relation>
</lom>
```

Code Illustration 4-60

4.2.8.2. <resource> Element

The <resource> element describes the target SCORM Content Model Component that this relationship references.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <resource>

SCORM Requirements: The multiplicity requirements for the <relation> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 100)
Content Organization	0 or More (SPM 100)
Activity	0 or More (SPM 100)
SCO	0 or More (SPM 100)
Asset	0 or More (SPM 100)

Data Type: The resource> element is a parent element. Parent elements have no
values associated with them. Parent elements act as "containers" for other elements. The
resource> element contains the following child elements:

- <identifier>
- <description>

```
<1om>
   <relation>
         <source>LOMv1.0</source>
         <value>isbasedon</value>
      </kind>
      <resource>
         <identifier>
            <catalog>URN</catalog>
            <entry>urn:ADL:1234-45FD</entry>
         </identifier>
         <description>
            <string language="en">ADL Course: Microsoft MSCE</string>
         </description>
      </resource>
   </relation>
</lom>
```

Code Illustration 4-61

4.2.8.2.1. <identifier> Element

The <identifier> element represents a mechanism for assigning a globally unique label that identifies the target SCORM Content Model Component

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <identifier>

SCORM Requirements: The multiplicity requirements for the <identifier> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 10)
Content Organization	0 or More (SPM 10)
Activity	0 or More (SPM 10)
SCO	0 or More (SPM 10)
Asset	0 or More (SPM 10)

Data Type: The <identifier> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <identifier> element contains the following child elements:

- <catalog> optional if an identifier is defined
- <entry> mandatory of an identifier is defined

If the <identifier> element is used in the meta-data instance, SCORM requires that <entry> element be present in the meta-data instance. The <entry> element is the element that holds the unique identifier. The <catalog> element is optional, but it should be considered best practice to supply the catalog or identification system scheme for the entry.

Code Illustration 4-62

4.2.8.2.1.1. <catalog> Element

The <catalog> element represents the name or designator of the identification or cataloging scheme for the entry. There are a variety of cataloging systems available. SCORM does not require the use of any one particular cataloging system. Organizations are free to choose any cataloging scheme that meets their organizations practices or policies. Some types of Cataloging systems are:

- Universal Resource Identifier (URI)
- Universal Resource Name (URN)
- Digital Object Identifier (DOI)
- International Standard Book Numbers (ISBN)
- International Standard Serial Numbers (ISSN)

The <catalog> element represents the scheme used to create and manage the entry.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <catalog>

SCORM Requirements: The multiplicity requirements for the <catalog> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

SCORM recommends that if the <identifier> element is used in a meta-data instance, then the <catalog> element should be present.

Data Type: The <catalog> element is represented as a CharacterString element. The CharacterString has an SPM of 1000 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

```
<1om>
  <relation>
     <kind>
        <source>LOMv1.0
         <value>isbasedon</value>
      </kind>
      <resource>
         <identifier>
           <catalog>URN</catalog>
            <entry>urn:ADL:1234-45FD</entry>
         </identifier>
         <description>
            <string language="en">ADL Course: Microsoft MSCE</string>
         </description>
      </resource>
   </relation>
</lom>
```

Code Illustration 4-63

4.2.8.2.1.2. <entry> Element

The <entry> element represents the value of the identifier within the identification or cataloging scheme (see <catalog> element) that designates or identifies the target SCORM Content Model Component.

Identifiers can take on various formats. The IEEE requires that the actual identifier value be represented as a CharacterString. Organizations are free to choose any mechanism to create unique identifiers that meets their organizations practices or policies. It is recommended that a common scheme be chosen.

The following listing is a sampling of identifier values (entry):

Scheme (<catalog>)</catalog>	Value (<entry>)</entry>
Universal Resource Name	urn:ADL: 1345-GFGC-23ED-3321
Universal Resource Identifier	http://www.adlnet.org/content/C0_01
ADL Registry	2134-RF43-3233-FRI9-ACDA

<u>ADL Note:</u> ADL Registry does not exist. This is just an example of one type of registry system that may exist.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <entry>

SCORM Requirements: The multiplicity requirements for the <entry> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

SCORM places a requirement that if the <identifier> element is used in a meta-data instance, then the <entry> element shall be present. The actual value used to identify the learning resource is held by the <entry> element. Because of this, if the meta-data instance contains an <identifier> element the <entry> element is required.

Data Type: The <entry> element is represented as a CharacterString element. The CharacterString has an SPM of 1000 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

```
<1om>
   <relation>
         <source>LOMv1.0</source>
         <value>isbasedon</value>
      </kind>
      <resource>
         <identifier>
            <catalog>URN</catalog>
            <entry>urn:ADL:1234-45FD</entry>
         </identifier>
         <description>
            <string language="en">ADL Course: Microsoft MSCE</string>
         </description>
      </resource>
   </relation>
</lom>
```

Code Illustration 4-64

4.2.8.2.2. <description> Element

The <description> element describes the target SCORM Content Model Component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <description>

SCORM Requirements: The multiplicity requirements for the <description> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <description> element is represented as a LangString. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

```
<1om>
   <relation>
      <kind>
         <source>LOMv1.0</source>
         <value>isbasedon</value>
      </kind>
      <resource>
         <identifier>
            <catalog>URN</catalog>
            <entry>urn:ADL:1234-45FD</entry>
         </identifier>
         <description>
            <string language="en">ADL Course: Microsoft MSCE</string>
         </description>
      </resource>
   </relation>
</lom>
```

Code Illustration 4-65

4.2.9. <annotation> Element

The Annotation category provides comments on the educational use of the SCORM Content Model Component and information on when and by whom the comments were created. This category enables educators to share their assessments of SCORM Content Model Components, suggestions for use, etc.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <annotation>

SCORM Requirements: The multiplicity requirements for the <annotation> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 30)
Content Organization	0 or More (SPM 30)
Activity	0 or More (SPM 30)
SCO	0 or More (SPM 30)
Asset	0 or More (SPM 30)

Data Type: The <annotation> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <annotation> element contains the following child elements:

- <entity>
- <date>
- <description>

Code Illustration 4-66

4.2.9.1. <entity> Element

The <entity> element identifies the entity or entities that that have created the annotation.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <entity>

SCORM Requirements: The multiplicity requirements for the <entity> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <entity> element as a CharacterString element. The CharacterString has an SPM of 1000 characters. (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information). All entity values shall be represented in vCard [9] format. This allows systems to take the CharacterString represented by the <entity> element and process this CharacterString as a valid vCard.

Example:

Code Illustration 4-67

4.2.9.2. <date> Element

The <date> element identifies the date the annotation was created.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <date>

SCORM Requirements: The multiplicity requirements for the <date> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The Date element is represented as a DateTime (Refer to Section 4.2.11.4: *DateTime Data Type* for more information). The <date> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <date> element contains two elements, one that represents the actual date of the contribution (<dateTime>) and one that represents a textual description of the date (<description>):

- <dateTime>
- <description>

Example:

Code Illustration 4-68

4.2.9.3. <description> Element

The <description> element shall be used to represent the contents of the annotation.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <description>

SCORM Requirements: The multiplicity requirements for the <description> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1

Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <description> element is represented as a LangString. The LangString has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Code Illustration 4-69

4.2.10. <classification> Element

The Classification category describes where the SCORM Content Model Component falls within a particular classification system. Multiple Classification categories may be used to define multiple classifications. The Classification category is typically used to link to a controlled vocabulary or classification system.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <classification>

SCORM Requirements: The multiplicity requirements for the <classification> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 40)
Content Organization	0 or More (SPM 40)
Activity	0 or More (SPM 40)
SCO	0 or More (SPM 40)
Asset	0 or More (SPM 40)

Data Type: The <classification> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <classification> element contains the following child elements:

- <purpose>
- <taxonPath>
- <description>
- <keyword>

```
<1om>
   <classification>
      <purpose>
         <source>LOMv1.0</source>
         <value>skill</value>
      </purpose>
      <taxonPath>
         <source>
            <string language="en-US">ADL SCORM Concepts/string>
         </source>
         <taxon>
            <id>I</id>
            <entry>
               <string language="en-US">Content Aggregation Model</string>
            </entry>
         </taxon>
         <taxon>
            <id>I.A</id>
            <entry>
               <string language="en-US">Content Packaging Fundamentals/string>
            </entry>
         </taxon>
         <taxon>
            <id>I.A.3</id>
            <entry>
               <string language="en-US">Resource Fundamentals/string>
         </taxon>
         <taxon>
            <id>I.A.3.a</id>
            <entry>
               <string language="en-US">Packaging SCOs</string>
            </entry>
         </taxon>
      </taxonPath>
      <description>
         <string language="en-US">Describing and packaging SCOs in a SCORM
Content Package</string>
      </description>
      <keyword>
         <string language="en-US">Packaging SCOs</string>
      </keyword>
   </classification>
</lom>
```

Code Illustration 4-70

4.2.10.1. <purpose> Element

The <purpose> element defines the purpose for classifying the SCORM Content Model Component.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <purpose>

SCORM Requirements: The multiplicity requirements for the cpurpose> element are for in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <purpose> element is represented as a Vocabulary element (Refer to Section 4.2.11.3: *Vocabulary Data Type* for more information).

Vocabulary Tokens: SCORM defines the <purpose> element as a Best Practice Vocabulary element. SCORM does not require the use of the vocabulary defined by IEEE 1484.12.1-2002. SCORM, however, does recommend the use of the values as best practice. The valid set of tokens defined by IEEE is:

- discipline
- idea
- prerequisite
- educational objective
- accessibility restrictions
- educational level
- skill level
- security level
- competency

Example:

Code Illustration 4-71

4.2.10.2. <taxonPath> Element

The <taxonPath> element describes a taxonomic path in a specific classification system. Each succeeding level is a refinement in the definition of the proceeding level.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <taxonPath>

SCORM Requirements: The multiplicity requirements for the <taxonPath> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 15)
Content Organization	0 or More (SPM 15)
Activity	0 or More (SPM 15)
SCO	0 or More (SPM 15)
Asset	0 or More (SPM 15)

Data Type: The <taxonPath> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <taxonPath> element contains the following child elements:

- <source>
- <taxon>

```
<1om>
   <classification>
      <purpose>
         <source>LOMv1.0</source>
         <value>skill</value>
      </purpose>
      <taxonPath>
         <source>
            <string language="en-US">ADL SCORM Concepts/string>
         </source>
         <taxon>
            <id>I</id>
            <entry>
               <string language="en-US">Content Aggregation Model</string>
            </entry>
         </taxon>
         <taxon>
            <id>I.A</id>
            <entry>
               <string language="en-US">Content Packaging Fundamentals/string>
            </entry>
         </taxon>
         <taxon>
            <id>I.A.3</id>
               <string language="en-US">Resource Fundamentals</string>
            </entry>
         </taxon>
         <taxon>
            <id>I.A.3.a</id>
               <string language="en-US">Packaging SCOs</string>
            </entry>
         </taxon>
      </taxonPath>
   </classification>
</lon>
```

Code Illustration 4-72

4.2.10.2.1. <source> Element

The <source> element describes or names the classification system. This data element may use any recognized official taxonomy or any user-defined taxonomy.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <source>

SCORM Requirements: The multiplicity requirements for the <source> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <source> element is represented as a LangString. The LangString element has an SPM of 1000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Example:

Code Illustration 4-73

4.2.10.2.2. <taxon> Element

The <taxon> element describes a particular term within a taxonomy. A taxon is a node that has a defined label or term. A taxon may also have an alphanumeric designation or identifier for standardized reference. Either or both the label and the entry may be used to designate a particular taxon.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <taxon>

SCORM Requirements: The multiplicity requirements for the <taxon> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or More (SPM 15)
Content Organization	0 or More (SPM 15)
Activity	0 or More (SPM 15)
SCO	0 or More (SPM 15)
Asset	0 or More (SPM 15)

Data Type: The <taxon> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements. The <taxonPath> element contains the following child elements:

- <id>
- <entry>

Example:

```
<1om>
   <classification>
      <purpose>
         <source>LOMv1.0
         <value>skill</value>
      </purpose>
      <taxonPath>
         <source>
            <string language="en-US">ADL SCORM Concepts/string>
         </source>
         <taxon>
           <id>I</id>
            <entry>
               <string language="en-US">Content Aggregation Model</string>
           </entry>
         </taxon>
      </taxonPath>
   </classification>
</lon>
```

Code Illustration 4-74

4.2.10.2.2.1. <id> Element

The <id> element describes the identifier of the taxon. For example, the Id can be a number or letter combination provided by the source of the taxonomy.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <id>

SCORM Requirements: The multiplicity requirements for the <id> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <id> element is represented as a CharacterString element. The CharacterString has an SPM of 100 characters (Refer to Section 4.2.11.1: *CharacterString Data Type* for more information).

Example:

Code Illustration 4-75

4.2.10.2.2.2. <entry> Element

The <entry> element shall contain a textual label of the taxon.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <entry>

SCORM Requirements: The multiplicity requirements for the <entry> element are defined in the table below:

SCORM Meta-data Application	Meta-data Multiplicity
Profile	Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <entry> element is represented as a LangString. The LangString element has an SPM of 500 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

```
<1om>
   <classification>
      <purpose>
         <source>LOMv1.0</source>
         <value>skill</value>
      </purpose>
      <taxonPath>
         <source>
            <string language="en-US">ADL SCORM Concepts/string>
         </source>
         <taxon>
            <id>I</id>
            <entry>
               <string language="en-US">Content Aggregation Model</string>
         </taxon>
      </taxonPath>
   </classification>
```

Code Illustration 4-76

4.2.10.3. <description> Element

The <description> element contains a description of the SCORM Content Model Component relative to the stated Purpose (cpurpose>) of the specific classification, such as discipline, idea, skill level, educational objective, etc.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <description>

SCORM Requirements: The multiplicity requirements for the <description> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or 1
Content Organization	0 or 1
Activity	0 or 1
SCO	0 or 1
Asset	0 or 1

Data Type: The <description> element is represented as a LangString. The LangString element has an SPM of 2000 characters (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Code Illustration 4-77

4.2.10.4. <keyword>

The <keyword> element contains keywords and phrases descriptive of the SCORM Content Model Component relative to the stated Purpose (classification, such as discipline, idea, skill level, educational objective, etc.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation: <keyword>

SCORM Requirements: The multiplicity requirements for the <keyword> element are defined in the table below:

SCORM Meta-data Application Profile	Meta-data Multiplicity Requirements
Content Aggregation	0 or More (SPM 40)
Content Organization	0 or More (SPM 40)
Activity	0 or More (SPM 40)
SCO	0 or More (SPM 40)
Asset	0 or More (SPM 40)

Data Type: The <keyword> element is represented as a LangString. The LangString element has an SPM of 1000 characters. (Refer to Section 4.2.11.2: *LangString Data Type* for more information).

Code Illustration 4-78

4.2.11. Common Data Types

The IEEE LOM contains several common data types. These data types are used to describe the makeup of the values held by the individual LOM elements. The following sections define the LOM data types and their characteristics.

4.2.11.1. CharacterString Data Type

The CharacterString is a data type used to capture a set of characters that are not interpreted in a language. The characters represented by this data type are those characters supported by ISO/IEC 10646-1:2000 [10]. The ISO 10646 standard provides a unified character coding standard for the communication and exchanged of electronic information.

4.2.11.2. LangString Data Type

The LangString is a data type that represents one or more characterstrings, in which the language for which the characterstring is represented in is identified. A LangString value may include multiple semantically equivalent characterstrings, such as translations or alternative descriptions.

XML Namespace: http://ltsc.ieee.org/xsd/LOM

XML Namespace Prefix: 1om

XML Binding Representation:

• <string language="language-code">Textual characterstring represented in the defined language</string>

The <string> element shall contain the actual phrase in a human language. The SPM length of the <string> element's value is determined by the parent element (see LangString elements defined in Section 1.2: *IEEE 1484.12.1-2002 Learning Object Metadata*).

Attribute:

• language-represents the human language of the contents of the <string> element. The language attribute is represented as a CharacterString with an SPM of 100 characters. The language attribute is optional. The <language> element of the <metaMetadata> element represents the default language of all LangStrings values. If the language attribute is not present in the individual <string> elements, the value held by the string shall be represented in the language defined by the <language> element of the <metaMetadata> element. The language attribute is important because without it language information is lost. The value space of the characterstring is from ISO-10646-1. This standard only consists of character codes for each independent characters. The standard consists of codes for characters that

come from different languages. Since the several languages share the same characters which are represented by the same character codes, the language information is important.

Multiplicity: The <string> element shall occur 0 or More times within its parent element (with an SPM of 10 <string> elements).

Example:

Code Illustration 4-79

4.2.11.3. Vocabulary Data Type

There are certain elements that have a Vocabulary data type. A vocabulary is a recommended (and in some cases required) list of appropriate values. The vocabulary data type is represented as a source/value pair. This indicates that for each vocabulary there is a source (or owner) and then a value (actual vocabulary token). For those vocabularies defined by the LOM, the source is required to be "LOMv1.0".

Data Type: The Vocabulary Data Type is an aggregate data type made up of two elements:

- <source>: An indication of the source, or owner, of the vocabulary values. For
 those elements that require the use of LOM vocabularies, the <source> element shall
 have a value of "LOMv1.0". For those elements that are not mandated to use a LOM
 vocabulary, the <source> value may be set to any implementation defined
 CharacterString. The CharacterString shall have an SPM of 1000 characters.
- <value>: The actual value defined by the source. If the <source> is LOMv1.0, the value shall come from the list defined in the LOM. For those elements that are not mandated to use a LOM vocabulary, the <value> shall be defined by the <source>. The value of the <value> element shall have an SPM of 1000 characters.

Multiplicity: The <source> and <value> elements shall occur 1 and only 1 time within those parent elements that are of a Vocabulary Data Type.

Example:

Code Illustration 4-80

4.2.11.4. DateTime Data Type

The DateTime data type is used to describe a point in time with at least an accuracy as small as one second.

Data Type: The DateTime data type is an aggregate data type made up of two elements:

- <dateTime>: CharacterString representation of the point in time. The CharacterString shall have an SPM of 200 characters.
- <description>: Represents a description of the point in time. The <description> element is a LangString data type (Refer to Section 4.2.11.2: LangString Data Type for more information). The LangString shall have an SPM of 1000 characters.

Format: The format of the <dateTime> element shall be represented in accordance with ISO8601:2000:

```
YYYY[-MM][-DD[Thh[:mm[:ss[.s[TZD]]]]]]
```

Where:

- yyyy = four-digit year (>=0001)
- MM = two-digit month (01 through 12)
- DD = two-digit day of month (01 through 31)
- hh = two-digit hour (00 through 23)
- mm = two-digit minute (00 through 59)
- ss = two-digit second (00 through 59)
- s = one or more digits representing a decimal fraction of a second
- TZD = time zone designator
- At least the four-digit year must be present. If additional parts of the DateTime are included, the character literals "-", "T", ":" and "." are part of the character lexical representation for the <dateTime>.

Multiplicity: The <dateTime> and <description> element occurs 0 or 1 time within its parent element.

Example:

```
<1om>
  eCycle>
     <contribute>
        <role>
           <source>LOMv1.0
           <value>author</value>
        </role>
        <entity>BEGIN:VCARD\nFN:Joe AuthorEND:VCARD</entity>
        <entity>BEGIN:VCARD\nFN:Mary AuthorEND:VCARD</entity>
           <dateTime>2002-12-12</dateTime>
           <description>
              <string language="en">A description for the date</string>
           </description>
        </date>
     </contribute>
  </lifeCycle>
</lon>
```

Code Illustration 4-81

4.2.11.5. Duration Data Type

The Duration data type is used to describe a interval in time with accuracy at least as small as one second.

Data Type: The Duration data type is an aggregate data type made up of two elements:

- <duration>: CharacterString representation of the time interval. The CharacterString shall have an SPM of 200 characters.
- <description>: Represents a description of the time interval. The <description> element is a LangString data type (Refer to Section 4.2.11.2: LangString Data Type for more information). The LangString shall have an SPM of 1000 characters.

Format: The format of the <duration> element shall be represented in accordance with ISO8601:2000:

```
P[yY][mM][dD][T[hH][nM][s[.s]S]]
```

Where:

- y = number of years
- m = number of months
- d = number of days
- h = number of hours
- n = number of minutes
- s = number of seconds or fraction of seconds

• The character literal designators "P", "Y", "M", "D", "T", "H", "M" and "S" must appear if the corresponding nonzero value is present.

Multiplicity: The <duration> and <description> element occurs 0 or 1 time within its parent element.

Example:

Code Illustration 4-82

4.2.11.6. VCard Data Type

The vCard type is used to describe an entity (individual or organization). vCard automates the exchange of personal information typically found on a traditional business card. The vCard specification [9] defines a "virtual" electronic business card. vCards can store information such as a name, address, telephone number, e-mail address, etc.

The following elements shall be in valid vCard format:

- LifeCycle.Contribute.Entity
- Meta-Metadata.Contribute.Entity
- Annotation.Entity

Example:

```
<annotation>
     <entity>BEGIN:VCARD\nFN:Joe Friday\nTEL:+1-919-555-7878\nTITLE:Area
Adminstrator\,Assistant\nEMAIL\;TYPE=INTERN\nET:jfriday@host.com\nEND:VCARD\n</
entity>
</annotation>
```

Code Illustration 4-83

4.3. LOM XML Schema Validation Approaches

The LOM XML Binding is nothing more than a collection of rules describing how to create meta-data instances in XML. XML Schema Definition (XSD) files are used to describe and enforce these rules. Sometimes there are certain rules that cannot be expressed in an XML Schema Definition. In these cases these rules are described by the normative text found in the IEEE draft standard. The IEEE provides several validation approaches for the LOM XML Binding. These validation approaches were built to provide several alternative XML schemas. Each of the approaches created support and enforce a different set of binding rules. In all cases the XSD files are not sufficient to validate LOM Meta-data instances. LOM Meta-data instances shall be conformant to the LOM XML Binding in all cases where:

```
LOM XML Binding = "XML Schema Definition" + "Normative Standard"
```

The IEEE provides a set of driver schemas that support the different validation approaches. These approaches can be used in the validation of the LOM meta-data instances. However, there may be additional validation steps needed based on the approach being used. The following sections describe the different validation approaches, schema drivers and their relationship to SCORM.

4.3.1. Strict Schema Validation Approach

The main goal of the strict schema validation approach is to enforce the strict requirements as defined by the LOM. The strict schema validation approach and its set of corresponding XML Schema Definition (XSD) files have the following characteristics:

- Supports uniqueness constraints. For those elements that are defined in the LOM as having a multiplicity requirement of 0 or 1, the strict schema validation approach enforces this constraint.
- LOM Vocabulary only. The strict schema validation approach only permits LOM meta-data instances that use the LOM defined vocabulary tokens.
- No extensions. The strict schema validation approach does not support extensions to the LOM.

Because of the fact that this approach does not support extensions to LOM and the use of LOM vocabularies, the approach permits valid strictly conforming LOM meta-data instances (as defined by IEEE).

If an organization defines policies not to extend the base elements defined by the LOM and enforce the use of the vocabularies defined by the LOM, then ADL recommends the use of the strict schema validation approach. It will ensure the most semantic interoperability of all of the validation approaches.

4.3.2. Custom Schema Validation Approach

The main goal of the custom schema validation approach is to support the ability to customize LOM meta-data instances to support extensions to both vocabularies and data elements. The custom schema validation approach (and its set of corresponding XSD files) contains the following characteristics:

- Support uniqueness constraints. For those elements that are defined in the LOM as having a multiplicity requirement of 0 or 1, the custom schema validation approach enforces this constraint.
- Custom Vocabularies. This approach allows for the use of LOM defined vocabularies or the use of an organizations vocabularies. The validation approach also provides a "template" to assist in building and XSD file for use by tools. These XSD files could be used in support of validation of the LOM Meta-data instance.
- Supports extensions to the LOM. This schema validation approach supports the ability to extend the data model set defined by LOM. This allows an organization to incorporate a different set (from another namespace) of elements in a LOM meta-data instance.

Because of the fact that this approach supports extensions to LOM, the approach permits valid conforming LOM meta-data instances (as defined by IEEE).

If an organization contains policies or practices that require a different set of vocabularies or a set of elements that shall be include in meta-data, then ADL recommends the use of the custom schema validation approach. However, keep in mind that this will not allow semantic interoperability of meta-data instances between different organizations. To keep a high degree of semantic interoperability, ADL recommends that vertical communities (e.g., healthcare industry) work to a consensus on building a set of interoperable vocabularies that can be applied to the custom validation approach.

For those elements in the LOM that are of type Vocabulary, SCORM only requires that certain elements use those vocabularies. For some of the elements, SCORM only makes it a recommended best practice to use the defined LOM vocabularies. If an organization needs to define a different set of vocabularies for SCORM best practice vocabulary elements, then ADL recommends the use of the custom schema validation approach and the guidance given for building an XSD file. This will permit tools to properly validate the meta-data instances.

4.3.3. Loose Schema Validation Approach

The main goal of the loose schema validation approach is to relax some of the constraints defined by the other schema validation approaches. When using the strict or custom validation approach, an artificial attribute is introduced to help tools with the validation of the uniqueness constraints of the LOM. If an organization wants to avoid the introduction of this artificial element, then the loose schema validation approach can be used. Keep in mind that the loose schema validation approach (and corresponding loose

schema driver) does not check uniqueness constraints and will permit non-conformant LOM Meta-data instances. Extra steps must to be taken for tools to enforce the overall LOM XML Binding rules.

The loose schema validation approach (and its set of corresponding XML Schema Definition files) contains the following characteristics:

- Does not support uniqueness constraints. The loose schema validation approach relaxes the uniqueness constraint checks by removing the introduction of the artificial attribute. Because of this there are cases where non-conforming LOM meta-data instances will validate against the loose schema validation approach. It is recommended that producers of LOM Meta-data instances guarantee that the instance produced is valid according to the draft IEEE LOM XML Binding when using the loose schema validation approach.
- No validation of vocabularies. The loose schema validation approach relaxes the
 schema enforcement of vocabulary source and value pair relationship constraints.
 The loose schema validation approach simplifies the schema validation process.
 However, the absence of the enforcement does not guarantee conforming LOM
 meta-data instances. Applications will have to validate the vocabulary source and
 value pair relationship constraints by other means.
- Supports extensions to the LOM. The validation approach supports the ability to extend the data model set defined by LOM. This allows an organization to incorporate a different set (from another namespace) of elements in a LOM metadata instance.

The loose schema validation approach requires more processing, outside of validation tools, to verify that the LOM Meta-data instance is conforming to the requirements of IEEE. ADL recommends that one of the other schema validation approaches be used in lieu of the loose schema validation approach.

4.4. Meta-data Extensions

In some cases, organizations may find that the core set of meta-data elements defined by LOM is not adequate enough to describe SCORM Content Model Components. The organization may have a set of meta-data extensions that are required to be used in describing these components. There are currently two types of extensions mechanism permitted within the LOM:

• XML element extensions. The first mechanism allows for the extension of the LOM data model elements. It is permissible to add additional elements to metadata instances. For example, if an organization has additional information regarding intellectual property rights and conditions or use for their SCORM Content Model Components, it is feasible for the organization to add elements to the Rights Category. There are currently several ongoing research and development activities dealing with digital rights management. It is feasible that a set of elements describing a more robust and rich sets of rights will be

- developed. This could ideally be used in describing SCORM Content Model Components by extending the Rights category.
- Vocabulary extensions. For some of the IEEE elements that have a list of vocabularies, SCORM recommends the use of those vocabularies. However, this is just a recommendation and the meta-data instances are not required (for conformance) to use those vocabularies (indicated as Best Practice vocabularies). If an organization has the need to use a different set of vocabularies, instead of the elements that are listed as SCORM Best Practice Vocabularies, then the organization has several alternatives. If the organization wants to enforce validation of the vocabularies, then ADL recommends the use of the custom schema validation approach (Refer to Section 4.4.2: Vocabulary Extension for more information on building XML Schema Definition files for validation purposes). The strict schema validation approach cannot be used since it will only validate strict LOM vocabulary pairs.

Several words of caution when using extensions.

- 1. When creating extension elements, it is not permitted to define elements that contain the same semantics of the currently defined IEEE LOM elements.
- 2. Meta-data that relies on the recommended values will have the highest degree of semantic interoperability (i.e., the likelihood that such meta-data will be understood by other end users or systems is the highest). To keep a high degree of semantic interoperability, ADL recommends that if extensions are needed to meet the needs of a vertical community, e.g., health care industry, then the vertical communities should work to a consensus on building a set of interoperable extensions.

The LOM distinguishes between two types of conformance to the IEEE standard. If a LOM meta-data instance does not contain any extensions, then the IEEE standard refers to this as a strictly conforming LOM Meta-data instance. If a LOM Meta-data instance contains extended data elements, then the IEEE standard refers to this as a conforming LOM Meta-data instance. SCORM supports both types of conformance and recommends LOM meta-data instances to be strictly conforming (based on the cautions described above).

4.4.1. Data Element Extension

There may be situations where organizations have policies and practices for describing SCORM Content Model Components in ways the LOM does not support with its element set. For example, organizations may have a robust digital rights management scheme that is used to describe their learning content. The LOM permits its base scheme to be extended. As mentioned above this has potential to decrease the semantic interoperability of the meta-data and learning content.

If an organization wishes to provide its own extensions to the current LOM the following rules shall be adhered to:

- Extensions to the LOM base schema shall retain the value space and data type of data elements from the LOM base schema.
- Extensions shall not define data types or value spaces for aggregate data elements in the LOM base schema.
- Extended data elements should not replace data elements in the LOM base schema.

Element extensions are handled in a variety of ways based on the XML specification set. ADL recommends that if XML extensions are needed by an organization, then the organization shall provide an XSD file that can be used for XML Meta-data instance validation.

4.4.2. Vocabulary Extension

The IEEE recommends the use of the vocabulary token set defined in the LOM. SCORM acknowledges this recommendation but further permits, if necessary, the creation and use of an organizations own vocabulary token set for those elements marked as Best Practice Vocabulary. As mentioned above, this has the potential to decrease the semantic interoperability of the meta-data and learning content and should be used with caution. To keep a high degree of semantic interoperability ADL recommends that vertical communities, e.g., healthcare industry work to a consensus on building a set of interoperable vocabularies. If there is a need in a vertical industry to create new sets of vocabulary tokens, it may be appropriate to work with others in that vertical industry to create an agreed upon vocabulary token set.

ADL recommends the use of the custom schema validation approach in order to represent the extended vocabularies. In order to create and use an organization-defined set of vocabulary tokens, the IEEE custom schema validation approach requires a similar XML binding as defined by the LOM XML Binding. When using the custom schema validation approach, the XSD files are designed to require one additional supporting XSD file. ADL is providing this supporting XSD file that is required to be referenced in all LOM Meta-data instances. The ADL file (adlmd_vocabvlp0.xsd) can be changed and renamed to support the given organizations needs. This XSD acts as a template. If an organization finds the need to create its own vocabulary token set for those Best Practice vocabularies, this file could act as a starting point for the creation of the required XSD. If an organization does not extend any of the Best Practice vocabularies and they are using the custom validation approach schemas, then the adlmd_vocabvlp0.xsd is required for validation.

The adlmd_vocabvlp0.xsd is made up of two sections: Source declaration and Vocabulary Declarations. The following sections describe how an organization can utilize the provided schema to document the extended vocabulary definitions.

4.4.2.1. Source Declaration

The custom schema validation approach described above was built to support validation of organization provided extension vocabularies. This section describes how to create an XSD file that will aid tools in the validation of these organization provided extensions. The section is described in terms of the adlmd_vocabvlp0.xsd provided by ADL.

The Source declaration section provides the means for declaring the source of the vocabulary. The value defined here shall be used in creating SCORM Meta-data instances that use the organizations extended vocabulary.

An organization is free to create any value to be used for the source of the vocabulary. For example, if the organization defines the following value to be used for the source field (**ADL Note:** the following is an example only; there is no defined vocabulary extension provided by ADL):

```
Source: ADLv1.3
```

Then the XSD file would need to be updated to reflect this value:

Code Illustration 4-84

This value is now required to be used for the <source> element for those Best Practice Vocabulary elements wishing to use the newly defined vocabulary tokens. There are no requirements placed on the value held by the source element (an SPM of 1000 characters is recommended, however).

Code Illustration 4-85

4.4.2.2. Vocabulary Declaration

The Vocabulary declaration section provides the means to declare the set of vocabulary tokens. These defined vocabulary value(s) shall be used in creating SCORM Meta-data instances that use an organization's extended vocabulary.

An organization is free to create any value(s) to be used as a token in the extended vocabulary if, for example, the organization defines the following values to be used for

the vocabulary value field (<u>ADL Note:</u> the following is an example only, there is no defined vocabulary extension provided by ADL):

- asset
- sco
- activity
- content organization
- content aggregation

In that case, the XSD file would need to be updated to reflect this value:

Code Illustration 4-86

If the example above was incorporated in an organization's custom schema, then one of the enumerated vocabulary values would be required in the <aggregationLevel> element. There are no requirements placed on the token values provided by an organization (an SPM of 1000 characters is recommended, however).

Code Illustration 4-87

4.5. SCORM Meta-data Application Profiles

Thus far, the meta-data sections of this document detailed the LOM information model, how this information model is bound to XML and ways to extend the LOM to potentially meet certain organizations policies or business needs. This section begins to describe the requirements for building meta-data that describes the SCORM Content Model Components (Content Aggregation, Content Organization, Activity, SCO and Asset).

SCORM Meta-data Application Profiles describe the integration of the IEEE LOM within the SCORM environment. The application profiles mandate the use of meta-data elements when LOM Meta-data is applied to the SCORM Content Model Components. Within SCORM, meta-data can be used to describe the various SCORM Content Model Components. The application profiles defined in this section outline the requirements for building the following types of meta-data instances:

- Content Aggregation Meta-data
- Content Organization Meta-data
- Activity Meta-data
- SCO Meta-data
- Asset Meta-data

Within SCORM, the Meta-data Application Profiles describe how to use and create metadata instances. SCORM imposes additional constraints on the application of the standard. These additional requirements or constraints can be described as:

- Mandatory Elements. SCORM describes sets of elements that are mandatory for the different application profiles. The LOM indicates that all elements are optional. If no requirements are made on which elements to use when creating meta-data instances, then the opportunities for search and discoverability within repositories and other systems are potentially diminished. By placing requirements on which sets of elements are mandatory for use in meta-data instances, the opportunity for enabling search, discoverability and reuse are increased.
- Use of Vocabularies. The LOM strongly suggests the use of the base vocabulary tokens defined by the LOM (LOMv1.0 source /value vocabularies). If other values are used, then that meta-data instance decreases the degree of semantic interoperability. SCORM strongly suggests that meta-data instances follow this practice. If there is a need to create new sets of vocabulary tokens, then to keep a high degree of semantic interoperability ADL recommends that vertical communities (e.g., healthcare industry) work to a consensus on building a set of interoperable vocabularies. SCORM describes the vocabularies in two ways: Restricted and Best Practice. If a vocabulary is identified as Restricted, SCORM requires the use of the LOM vocabulary. If a vocabulary is identified as Best Practice, SCORM suggests the use of the LOM vocabulary, however organizations are free to extend the meta-data instances with their own vocabulary (Refer to Section 4.4: *Meta-data Extensions* for more details on extending vocabulary token lists).

• Best Practices. In some cases, SCORM identifies some best practices for building meta-data instances.

4.5.1. Associating Meta-data with SCORM Components

Once the meta-data, is created it somehow needs to be associated or assigned to the SCORM Content Model Components to become useful. The Content Package provides the way of associating the meta-data with the actual SCORM Content Model Components themselves. The IMS Content Packaging Specification has defined locations in the IMS Manifest to associate meta-data to different portions of the Manifest (See the Section 3.4: *Building Content Packages* for more details).

4.5.1.1. Content Aggregation Meta-data

Content Aggregation level meta-data shall be used to describe the package (i.e., Content Aggregation) as a whole. SCORM does not impose any requirements, in addition to the LOM requirements, for Content Aggregation meta-data. The only true requirement is that the meta-data be conformant with the IEEE LOM. All meta-data elements shall be considered optional.

Figure 4.5.1.1a: Application of Content Aggregation Meta-data

The following example illustrates the inclusion of meta-data "in-line" in the content package's manifest. This is one mechanism for applying meta-data to a manifest. This mechanism can be used for the rest of the meta-data application profiles.

```
<manifest>
   <metadata>
     <schema>ADL SCORM</schema>
      <schemaversion>CAM 1.3</schemaversion>
      <lom xmlns="http://ltsc.ieee.org/xsd/LOM>
         <general/>
         <classification/>
         <annotation/>
         feCycle/>
         <technical/>
         <metaMetadata/>
         <educational/>
         <relation/>
         <rights/>
      </lon>
</manifest>
```

Code Illustration 4-88

The following example illustrates the use of the <adlcp:location> element to describe the meta-data. The <adlcp:location> element describes the location of the meta-data relative to the root of the package.

Code Illustration 4-89

Both examples illustrate how the XML can be built for the Content Aggregation Metadata Application Profile and where it is to be located in the manifest file.

4.5.1.2. Content Organization Meta-data

Content Organization Meta-data describes a Content Organization. This meta-data is used to facilitate reuse and discoverability within a content repository or similar system. This is accomplished by providing descriptive information about the Content Organization. Content Organization Meta-data is information about a Content Organization as a whole. It describes what the Content Organization is for, who can use it, who controls it, etc., and information that can be searched externally such as the Content Organization title, description and version.

Figure 4.5.1.2a: Application of Content Organization Meta-data

The Content Organization Meta-data can be applied as "in-line" meta-data or referenced by the <adlcp:location> element. Specifically, it is applied to the <organization> elements in the package's manifest. For the sake of simplicity, the following examples will use the <adlcp:location> element to represent the reference to the meta-data being described. It is important to note that this is done strictly for brevity. In-line meta-data is permitted in all locations where the <adlcp:location> element is found.

Code Illustration 4-90

4.5.1.3. Activity Meta-data

Activity Meta-data is meta-data that describes activities (represented in imsmanifest.xml file as an <organization> or <item> element). This meta-data is used to facilitate reuse and discoverability within a content repository or similar system and to provide descriptive information about the activity. Activity meta-data typically contains information about a activity as a whole that describes, in a context-sensitive manner, what it is for, who can use it, who controls it, etc.

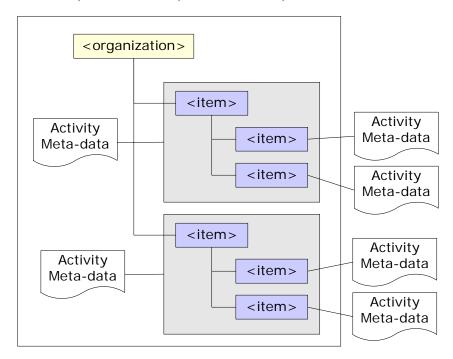


Figure 4.5.1.3a: Application of Activity Meta-data

Activity Meta-data is applied to the <item> elements in a content package's manifest.

Code Illustration 4-91

4.5.1.4. SCO Meta-data

SCO Meta-data can be applied to a SCO that provides descriptive information about the learning resource independent of a particular context. This meta-data is used to facilitate reuse and discoverability of such learning resources. SCO Meta-data is meta-data that describes a SCO that is not related to a specific Content Organization structure (i.e., context-independent meta-data). The meta-data contains information that can be searched externally such as content title, description, date of creation and version.

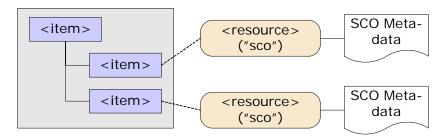


Figure 4.5.1.4a: Application of SCO Meta-data

SCO Meta-data is applied to <resource> elements with an adlcp:scormType="sco" attribute (i.e., SCO resource) in the content packages manifest.

Code Illustration 4-92

4.5.1.5. Asset Meta-data

Asset Meta-data can be applied to Assets such as illustrations, documents or media streams. Asset Meta-data provides descriptive information about SCORM Assets independent of learning content. This meta-data is used to facilitate reuse and discoverability principally during learning content creation of such Assets. Asset meta-data is meta-data that describes Assets in a non-context-specific way that can be searched externally by title, description, date of creation and version and that can be used to create a searchable repository of sharable Assets.

Asset Meta-data is applied to <resource> elements with an adlcp:scormType="asset" attribute (i.e., Asset resource) in the content packages manifest. Asset Meta-data can also be applied to <file> elements found as child elements of <resource> elements.

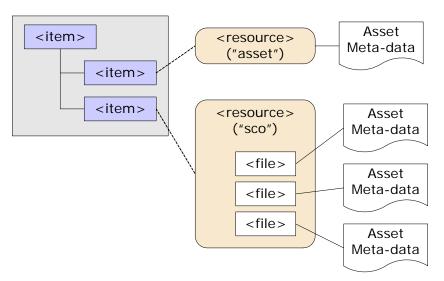


Figure 4.5.1.5a: Application of Asset Meta-data

The following example illustrates asset meta-data, where the resource represents an asset.

Code Illustration 4-93

The following example illustrates asset meta-data on a <file> element.

Code Illustration 4-94

4.5.2. SCORM Meta-data Application Profile Requirements

Table 4.5.2a defines the requirements for each of the above mentioned meta-data application profiles. Each of the meta-data application profiles is listed with the corresponding requirements for each of the meta-data elements. Note that these requirements do not imply that every Content Aggregation, Content Organization, Activity, SCO or Asset must be described by meta-data. However, the requirements do apply whenever meta-data is used to describe the components.

- "M" indicates that the element is Mandatory.
- "O" indicates that the element is Optional.

Name	Content Aggregation	Content Organization, Activity and SCO	Asset
1.0 General	0	M	M
1.1 Identifier	O	M	M
1.1.1 Catalog	0	0	0
1.1.2 Entry	O	M	M
1.2 Title	O	M	M
1.3 Language	О	О	O
1.4 Description	О	M	M
1.5 Keyword	О	M	O
1.6 Coverage	О	О	O
1.7 Structure	О	О	O
1.8 Aggregation Level	О	О	O
Name	Content Aggregation	Content Organization, Activity and SCO	Asset
2.0 Life Cycle	О	M	О
2.1 Version	О	M	О
2.2 Status	О	M	O
2.3 Contribute	0	О	О
2.3.1 Role	О	О	О
2.3.2 Entity	О	0	О
2.3.3 Date	О	О	O
Name	Content Aggregation	Content Organization, Activity and SCO	Asset
3.0 Meta-Metadata	O	M	M
3.1 Identifier	О	M	M
3.1.1 Catalog	О	О	О
3.1.2 Entry	0	M	M
3.2 Contribute	0	0	О
3.2.1 Role	0	0	O
3.2.2 Entity	О	0	О
3.2.3 Date	О	0	O
3.3 Metadata Schema	О	M	M
3.4 Language	О	О	O

Name	Content Aggregation	Content Organization, Activity and SCO	Asset
4.0 Technical	0	M	M
4.1 Format	О	M	M
4.2 Size	O	0	O
4.3 Location	О	О	O
4.4 Requirement	О	О	O
4.4.1 OrComposite	О	0	O
4.4.1.1 Type	O	O	O
4.4.1.2 Name	O	O	O
4.4.1.3 MinimumVersion	O	O	O
4.4.1.4 MaximumVersion	O	O	O
4.5 InstallationRemarks	О	О	O
4.6 Other Platform Requirements	O	O	O
4.7 Duration	O	O	O
Name	Content Aggregation	Content Organization, Activity and SCO	Asset
5.0 Educational	0	О	О
5.1 Interactivity Type	О	О	О
5.2 Learning Resource Type	0	О	O
5.3 Interactivity Level	О	О	О
5.4 Semantic Density	О	О	О
5.5 Intended End User Role	О	О	О
5.6 Context	О	О	О
5.7 Typical Age Range	O	О	О
5.8 Difficulty	О	О	О
5.9 Typical Learning Time	O	О	О
5.10 Description	O	О	О
5.11 Language	О	О	0
Name	Content Aggregation	Content Organization, Activity and SCO	Asset
6.0 Rights	О	M	M
6.1 Cost	O	M	M
6.2 Copyright and Other Restrictions	О	M	M
6.3 Description	0	О	O
Name	Content Aggregation	Content Organization, Activity and SCO	Asset
7.0 Relation	0	O	O
7.1 Kind	0	O	О
7.2 Resource	0	О	О
7.2.1 Identifier	0	О	O
7.2.1.1 Catalog	О	О	О
7.2.1.2 Entry	0	0	O
7.2.2 Description	О	0	О
Name	Content Aggregation	Content Organization, Activity and SCO	Asset
8.0 Annotation	О	О	O
8.1 Entity	О	О	О
8.2 Date	O	O	О
8.3 Description	0	0	0

Name	Content Aggregation	Content Organization, Activity and SCO	Asset
9.0 Classification	0	O	O
9.1 Purpose	О	О	O
9.2 Taxon Path	О	О	O
9.2.1 Source	О	О	O
9.2.2 Taxon	О	О	O
9.2.2.1 Id	0	О	О
9.2.2.2 Entry	О	О	О
9.3 Description	О	О	О
9.4 Keyword	0	О	О

Table 4.5.2a: SCORM Meta-data Application Profile Requirements

This page intentionally left blank.

SECTION 5 SCORM Sequencing and Presentation

This page intentionally left blank.

5.1. Sequencing and Presentation

This section describes how to encode specific sequencing strategies in XML. This XML can then be placed in the IMS Manifest file to define sequencing rules for activities. There are two main ways of creating sequencing rules:

- <sequencing> element. The <sequencing> element encapsulates all of the necessary sequencing rules and strategies for a given activity.
- <sequencingCollection> element. The <sequencingCollection> element
 can be used to collect a set of sequencing rules and strategies to be reused by
 several activities.

Activities are represented as <item> elements or <organization> elements within a manifest. The <sequencing> element can be placed as a child of any parent <item> (as opposed to leaf <item> elements) or <organization> element. The <sequencingCollection> element can be referenced by similar means.

More details on sequencing rules and strategies can be found in the SCORM SN book.

5.1.1. <sequencing> Element

Sequencing information is associated with items in a hierarchical structure by associating a single <sequencing> element with the hierarchical item. In the context of IMS Content Packages, this is done by including the <sequencing> element within either an <item> element or an <organization> element.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <sequencing>

Data Type: The <sequencing> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <sequencing> element contains the following elements/attributes:

Attributes:

- ID (optional) The unique identifier assigned to this sequencing set. XML Data Type: xs:ID.
- IDRef (optional) Reference to the unique identifier assigned to this sequencing set. This is used to link this reference to the declared sequencing set that must be defined somewhere in the same XML document. XML Data Type: xs:IDREF.

Elements:

- <controlMode>
- <sequencingRules>
- dimitConditions>
- <auxiliaryResources>
- <rollupRules>
- <objectives>
- <randomizationControls>
- <deliveryControls>
- <adlseq:constrainedChoiceConsiderations>
- <adlseq:rollupConsiderations>

Multiplicity: Occurs 0 or More times within the <sequencingCollection> element, if the <sequencingCollection> element is present. Occurs 0 or 1 time for each <item> or <organization> within an IMS content package.

Example:

Code Illustration 5-1

5.1.2. <controlMode> Element

The <controlMode> element is the container for the sequencing control mode information including descriptions of the types of sequencing behaviors specified for an activity [5]. This element captures information dealing with the types of sequencing requests that are permitted.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <controlMode>

Data Type: The <controlMode> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <controlMode> element contains the following elements/attributes:

Attribute:

- choice (optional, default value = true) Indicates that a choice sequencing request is permitted (or not permitted if value = false) to target the children of the activity [5]. XML Data Type: xs:boolean.
- choiceExit (optional, default value = true) Indicates that an active child of this activity is permitted to terminate (or not permitted if value = false) if a choice sequencing request is processed [5]. XML Data Type: xs:boolean.
- flow (optional, default value = false) Indicates the flow sequencing requests is permitted (or not permitted if value = false) to the children of this activity [5]. XML Data Type: xs:boolean.
- forwardOnly (optional, default value = false) Indicates that backward targets (in terms of activity tree traversal) are not permitted (or are permitted if value = false) for the children of this activity [5]. XML Data Type: xs:boolean.
- useCurrentAttemptObjectiveInfo (optional, default value = true) Indicates that the objective progress information for the children of the activity will only be used (or not used if value = false) in rule evaluations and rollup if that information was recorded during the current attempt on the activity [5]. XML Data Type: xs:boolean.
- useCurrentAttemptProgressInfo (optional, default value = true) Indicates that the attempt progress information for the children of the activity will only be used (or not used if value = false) in rule evaluations and rollup if that information was recorded during the current attempt on the activity [5]. XML Data Type: xs:boolean.

Elements:

None

Multiplicity: Occurs 0 or 1 time in the <sequencing> element.

Code Illustration 5-2

5.1.3. <sequencingRules> Element

The <sequencingRules> element is the container for a sequencing rule description. Each rule describes the sequencing behavior for an activity. Each activity may have an unlimited number of sequencing rules and within any grouping the rules are evaluated in the order in which they are listed [5].

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <sequencingRules>

Data Type: The <sequencingRules> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <sequencingRules> element contains the following elements/attributes:

Attributes:

None

Elements:

- conditionRule>
- <exitConditionRule>
- <postConditionRule>

Multiplicity: Occurs zero or once in the <sequencing> element.

Example:

```
<item identifier="PRETEST1">
   <title>Module 1 -- Pretest</title>
   <item identifier="PRETEST_QUESTION1" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION1">
      <title>Question 1</title>
   </item>
   <item identifier="PRETEST_QUESTION2" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION2">
      <title>Question 2</title>
   </item>
   <imsss:sequencing>
      <imsss:sequencingRules>
         <imsss:preConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "satisfied"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "disabled"/>
         </imsss:preConditionRule>
      </imss:sequencingRules>
   </imsss:sequencing>
</item>
```

Code Illustration 5-3

5.1.3.1. conditionRule> Element

The conditionRule> element is the container for the description of actions that
control sequencing decisions and delivery of a specific activity. Rules that include such
actions are used to determine if the activity will be delivered [5].

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

Attributes:

None

Elements:

- <ruleConditions>
- <ruleAction>

Multiplicity: Occurs 0 or More times in the <sequencingRules> element.

Example:

```
<item identifier="PRETEST1">
   <title>Module 1 -- Pretest</title>
   <item identifier="PRETEST_QUESTION1" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION1">
      <title>Question 1</title>
   <item identifier="PRETEST_QUESTION2" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION2">
      <title>Question 2</title>
   </item>
   <imsss:sequencing>
      <imsss:sequencingRules>
         <imsss:preConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "satisfied"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "disabled"/>
         </imsss:preConditionRule>
      </imsss:sequencingRules>
   </imsss:sequencing>
</item>
```

Code Illustration 5-4

5.1.3.1.1. <ruleConditions> Element

The <ruleConditions> element is the container for the set of conditions that are to be applied either the pre-condition, post-condition and exit condition rules.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <ruleConditions>

Data Type: The ruleConditions> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The ruleConditions> element contains the following elements/attributes:

Attributes:

- conditionCombination (optional, default value = all). This attribute indicates how rule conditions (<ruleCondition>) are combined in evaluating the rule [5]. XML Data Type: xs:token.
 - o all: The rule condition evaluates to true if and only if all of the individual rule conditions evaluates to true [5].
 - o any: The rule condition evaluates to true if and only if any of the individual rule conditions evaluates to true [5].

Elements:

<ruleCondition>

Example:

```
<item identifier="PRETEST1">
   <title>Module 1 -- Pretest</title>
   <item identifier="PRETEST_QUESTION1" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION1">
      <title>Ouestion 1</title>
   </item>
   <item identifier="PRETEST_QUESTION2" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION2">
      <title>Question 2</title>
   </item>
   <imsss:sequencing>
      <imsss:sequencingRules>
         <imsss:preConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "satisfied"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "disabled"/>
         </imsss:preConditionRule>
      </imsss:sequencingRules>
   </imsss:sequencing>
</item>
```

Code Illustration 5-5

5.1.3.1.1.1. <ruleCondition>

The <ruleCondition> element represents the condition that is evaluated.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <ruleCondition>

Data Type: The <ruleCondition> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <ruleCondition> element contains the following elements/attributes:

Attributes:

- referencedObjective (optional, No default value). This attribute represents the identifier of an objective associated with the activity used during the evaluation of the condition [5]. XML Data Type: xs:string.
- measureThreshold (optional, default value = 0.0). The value used as a threshold during measure-based condition evaluations [5]. XML Data Type: xs:decimal (Range -1.0000 to 1.0000 with a precision of at least four decimal places).
- operator (optional, default value = noop). The unary logical operator to be applied to the condition [5]. XML Data Type: xs:token.
 - o not: The corresponding condition is negated in the rule evaluation [5].
 - o noop: The corresponding condition is used as is in rule evaluation [5].
- condition (required, default value = always). This attribute represents the actual condition for the rule [5]. XML Data Type: xs:token. The following is a listing of the vocabulary tokens to be used for the condition attribute:
 - O satisfied
 - O objectiveStatusKnown
 - O objectiveMeasureKnown
 - O objectiveMeasureGreaterThan
 - O objectiveMeasureLessThan
 - O completed
 - O activityProgressKnown
 - O attempted
 - O attempLimitExceeded
 - O timeLimitExceeded
 - O outsideAvailableTimeRange
 - O always

Multiplicity: Occurs 0 or More times within the <ruleConditions> element. If the <ruleConditions> element is defined to capture individual rule conditions, then the <ruleCondition> element is required (1 or More times).

Example:

```
<item identifier="PRETEST1">
   <title>Module 1 -- Pretest</title>
   <item identifier="PRETEST_QUESTION1" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION1">
      <title>Question 1</title>
   </item>
   <item identifier="PRETEST_QUESTION2" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION2">
      <title>Question 2</title>
   </item>
   <imsss:sequencing>
      <imsss:sequencingRules>
         <imsss:preConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "satisfied"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "disabled"/>
         </imsss:preConditionRule>
      </imsss:sequencingRules>
   </imsss:sequencing>
</item>
```

Code Illustration 5-6

5.1.3.1.2. <ruleAction> Element

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <ruleAction>

Data Type: The <ruleAction> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <ruleAction> element contains the following elements/attributes:

Attributes:

- action (required, if no action is defined the action is ignored). The action represents the desired sequencing behavior if the rule condition evaluates to true [5].
 - If action is defined in a conditionRule>, then the action attribute shall have one of the following values:
 - skip
 - disabled
 - hiddenFromChoice
 - stopForwardTraversal

- If action is defined in a <postConditionRule>, then the action attribute shall have one of the following values:
 - exitParent
 - exitAll
 - retry
 - retryAll
 - continue
 - previous
- If action is defined in a <exitConditionRule>, then the action attribute shall have one of the following values:
 - exit

Elements:

None

Example:

```
<item identifier="PRETEST1">
   <title>Module 1 -- Pretest</title>
   <item identifier="PRETEST_QUESTION1" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION1">
      <title>Question 1</title>
   <item identifier="PRETEST OUESTION2" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION2">
      <title>Question 2</title>
   </item>
   <imsss:sequencing>
      <imsss:sequencingRules>
         <imsss:preConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "satisfied"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "disabled"/>
         </imsss:preConditionRule>
      </imsss:sequencingRules>
   </imsss:sequencing>
</item>
```

Code Illustration 5-7

5.1.3.2. <postConditionRule> Element

The <postConditionRule> element is the container for the description of actions that control sequencing decisions and delivery of a specific activity. Rules that include such actions are applied when the activity attempt terminates [5].

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

Data Type: The <postConditionRule> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <postConditionRule> element contains the following elements/attributes:

Attributes:

None

Elements:

- <ruleConditions> (Refer to Section 5.1.3.1.1: <ruleConditions> Element for
 more details
- <ruleAction> (Refer to Section 5.1.3.1.2: <*ruleAction> Element* for more details)

Multiplicity: Occurs 0 or More times in the <sequencingRules> element.

Example:

```
<item identifier="PRETEST1">
   <title>Module 1 -- Pretest</title>
   <item identifier="PRETEST_QUESTION1" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION1">
      <title>Question 1</title>
   </item>
   <item identifier="PRETEST OUESTION2" isvisible = "false"</pre>
         identifierref="RESOURCE OUESTION2">
      <title>Question 2</title>
   </item>
   <imsss:sequencing>
      <imsss:sequencingRules>
         <imsss:postConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition="satisfied"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action="exitParent"/>
         </imsss:postConditionRule>
         <imsss:postConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "always"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "continue"/>
         </imsss:postConditionRule>
      </imsss:sequencingRules>
   </imsss:sequencing>
</item>
```

Code Illustration 5-8

5.1.3.3. <exitConditionRule> Element

The <exitConditionRule> element is the container for the description of actions that control sequencing decisions and delivery of a specific activity. Rules that include such actions are applied after an activity attempt on a descendent activity terminates [5].

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <exitConditionRule>

Data Type: The <exitConditionRule> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <exitConditionRule> element contains the following elements/attributes:

Attributes:

None

Elements:

- <ruleConditions> (Refer to Section 5.1.3.1.1: <ruleConditions> Element for
 more details
- <ruleAction> (Refer to Section 5.1.3.1.2: < ruleAction> Element for more
 details)

Multiplicity: Occurs 0 or More times in the <sequencingRules> element.

Example:

```
<item identifier="PRETEST1">
   <title>Module 1 -- Pretest</title>
   <item identifier="PRETEST OUESTION1" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION1">
      <title>Question 1</title>
   <item identifier="PRETEST_QUESTION2" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION2">
      <title>Question 2</title>
   </item>
   <imsss:sequencing>
      <imsss:sequencingRules>
         <imsss:exitConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition="satisfied"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action="exit"/>
         </imsss:exitConditionRule>
      </imsss:sequencingRules>
   </imsss:sequencing>
```

Code Illustration 5-9

5.1.4. < limitConditions > Element

At this time ADL is recommending use of the limitConditions> element with caution.
Various concerns have risen dealing with time tracking in order to evaluate these
conditions. ADL would like continue to evaluate this element and its impact on
sequencing rules, behaviors and strategies.

ADL supports the usage of only two current limit conditions. The limit condition deals with attempts on the activity and maximum time allowed in the attempt. This section describes that attempt limit and maximum time allowed in the attempt attribute and the requirements for use.

For more information on the other limit conditions, see the IMS Simple Sequencing Specification [5].

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

Attributes:

- attemptLimit(optional, default value = 0). This value indicates the maximum number of attempts for the activity [5]. XML Data Type: xs:nonNegativeInteger.
- attemptAbsoluteDurationLimit (optional, default value = 0.0). This value indicates the maximum time duration that the learner is permitted to spend experienced a single attempt on the activity. The limit applies to only the time the learner is actually interacting with the activity and does not apply when the activity is suspended [5]. This element is used to initialize the cmi.max_time_allowed (See the SCORM RTE Book [2]). Currently, the SCO is responsible for all time tracking and behaviors due to timing violations. XML Data Type: xs:duration.

Elements:

None

Multiplicity: Occurs 0 or 1 time in the <sequencing> element.

Code Illustration 5-10

5.1.5. <auxiliaryResources> Element

At this time, ADL is recommending use of the <auxiliaryResources> element with caution. Various concerns have risen dealing with defining the requirements on the usage of auxiliary resources (e.g., can auxiliary resources be SCOs, are sequencing rules applied to auxiliary resource, etc.). ADL would like to continue to evaluate this element and its impact on sequencing rules, behaviors and strategies.

For more information on the auxiliary resources, see the IMS SS Specification [5].

5.1.6. <rollupRules> Element

The <rollupRules> element is the container for the set of rollup rules defined for the activity.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <rollupRules>

Data Type: The <rollupRules> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <rollupRules> element contains the following elements/attributes:

Attributes:

- rollupObjectiveSatisfied (optional, default value = true). This attribute indicates that the objective's satisfied status associated with the activity is included in the rollup for its parent activity [5]. XML Data Type: xs:boolean.
- rollupProgressCompletion (optional, default value = true). This attribute indicates that the attempt's completion status associated with the activity is included in the rollup for its parent activity [5]. XML Data Type: xs:boolean.
- objectiveMeasureWeight(optional, default value = 1.0000). This attribute indicates the weighting factor applied to the objectives normalized measure is used during rollup for the parent activity [5]. XML Data Type: xs:decimal (Range 0.0000 to 1.0000 (precision to at least 4 significant decimal places).

Elements:

<rollupRule>

Multiplicity: Occurs 0 or 1 time in the <sequencing> element.

```
<item identifier="MODULE2">
   <title>Module 2 -- Enhancing Images</title>
   <item identifier="PRETEST2">
      <title>Module 2 -- Pretest</title>
       <item identifier="PRETEST_QUESTION4" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION4">
          <title>Question 4</title>
       </item>
       <item identifier="PRETEST_QUESTION5" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION5">
          <title>Question 5</title>
       <item identifier="PRETEST_QUESTION6" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION6">
          <title>Question 6</title>
       </item>
       <imsss:sequencing>
          <imsss:rollupRules >
             <imsss:rollupRule childActivitySet = "all">
                <imsss:rollupConditions>
                   <imsss:rollupCondition condition = "attempted"/>
                </imsss:rollupConditions>
                <imsss:rollupAction action = "completed"/>
             </imsss:rollupRule>
          </imsss:rollupRules>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-11

5.1.6.1. <rollupRule> Element

The <rollupRule> element is the container for each rollup rule that is to be applied to an activity. The general format for a rule can be expressed informally as "If child-activity set, condition set Then action". Multiple conditions are permitted.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <rollupRule>

Data Type: The <rollupRule> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <rollupRule> element contains the following elements/attributes:

Attributes:

• childActivitySet (optional, default value = all). This attribute indicates whose data values are used to evaluate the rollup condition [5]. XML Data Type: xs:token. The following is a list of vocabularies permitted to be used:

```
O all O any
```

- O none
- O atLeastCount
- O atLeastPercent
- minimumCount (optional, default value = 0). The minimumCount attribute shall be used when the childActivitySet attribute is set to atLeastCount. The rollup rule condition evaluates to true if at least the number of children specified by this attribute have a rollup condition of true [5]. XML Data Type: xs:nonNegativeInteger.
- minimumPercent (optional, default value = 0.0000). The minimumPercent attribute shall be used when the childActivitySet attribute is set to atLeastPercent. The rollup rule condition evaluates to true if at least the percentage of children specified by this attribute have a rollup condition value of true [5].XML Data Type: xs:decimal (Range 0.0000 to 1.0000 (precision to at least 4 significant decimal places).

Elements:

- <rollupConditions>
- <rollupAction>

Multiplicity: Occurs 0 or More times in the <rollupRules> element.

Example:

```
<item identifier="MODULE2">
   <title>Module 2 -- Enhancing Images</title>
   <item identifier="PRETEST2">
      <title>Module 2 -- Pretest</title>
       <item identifier="PRETEST_QUESTION4" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION4">
          <title>Question 4</title>
       <item identifier="PRETEST_QUESTION5" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION5">
          <title>Question 5</title>
       <item identifier="PRETEST_QUESTION6" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION6">
          <title>Question 6</title>
       </item>
       <imsss:sequencing>
          <imsss:rollupRules >
             <imsss:rollupRule childActivitySet = "all">
                <imsss:rollupConditions>
                   <imsss:rollupCondition condition = "attempted"/>
                </imsss:rollupConditions>
                <imsss:rollupAction action = "completed"/>
             </imsss:rollupRule>
          </imsss:rollupRules>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-12

5.1.6.1.1. <rollupConditions> Element

The <rollupConditions> element is the container for the set of conditions that are applied within a single rollup rule.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <rollupConditions>

Data Type: The <rollupConditions> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <rollupConditions> element contains the following elements/attributes:

Attributes:

- conditionCombination (optional, default value = any). This attribute indicates how the rollup conditions are to be combined. XML Data Type: xs:token. The attribute contains a value of one of the following tokens:
 - O all
 - O any

Elements:

• <rollupCondition>

Multiplicity: Occurs 1 and only 1 time in the <rollupRule> element.

```
<item identifier="MODULE2">
   <title>Module 2 -- Enhancing Images</title>
   <item identifier="PRETEST2">
      <title>Module 2 -- Pretest</title>
       <item identifier="PRETEST_QUESTION4" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION4">
          <title>Question 4</title>
       </item>
       <item identifier="PRETEST_QUESTION5" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION5">
          <title>Question 5</title>
       </item>
       <item identifier="PRETEST_QUESTION6" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION6">
          <title>Question 6</title>
       </item>
       <imsss:sequencing>
          <imsss:rollupRules >
             <imsss:rollupRule childActivitySet = "all">
                <imsss:rollupConditions>
                   <imsss:rollupCondition condition = "attempted"/>
                </imsss:rollupConditions>
                <imsss:rollupAction action = "completed"/>
             </imsss:rollupRule>
          </imsss:rollupRules>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-13

5.1.6.1.2. <rollupCondition> Element

The <rollupCondition> element identifies a condition to be applied in the rollup rule [5].

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <rollupCondition>

Data Type: The <rollupCondition> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <rollupCondition> element contains the following elements/attributes:

Attributes:

• operator (optional, default value = noop). The unary logical operator to be applied to the individual condition [5]. XML Data Type: xs:token. The attribute contains a value of one of the following tokens:

```
O not
O noOp
```

- condition (required) Indications the condition element for the rule. XML Data Type:xs:token. The attribute contains a value of one of the following tokens:
 - O satisfied
 - O objectiveStatusKnown
 - O objectiveMeasureKnown
 - O completed
 - O activityProgressKnown
 - O attempted
 - O attemptLimitExceeded
 - O timeLimtExceeded
 - O outsideAvailableTimeRange"

Elements:

None

Multiplicity: Occurs 1 or More times in the <rollupConditions> element.

Example:

```
<item identifier="MODULE2">
   <title>Module 2 -- Enhancing Images</title>
   <item identifier="PRETEST2">
      <title>Module 2 -- Pretest</title>
       <item identifier="PRETEST_QUESTION4" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION4">
          <title>Question 4</title>
       </item>
       <item identifier="PRETEST_QUESTION5" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION5">
          <title>Question 5</title>
       </item>
       <item identifier="PRETEST_QUESTION6" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION6">
          <title>Question 6</title>
       </item>
       <imsss:sequencing>
          <imsss:rollupRules >
             <imsss:rollupRule childActivitySet = "all">
                <imsss:rollupConditions>
                    <imsss:rollupCondition condition = "attempted"/>
                </imsss:rollupConditions>
                <imsss:rollupAction action = "completed"/>
             </imsss:rollupRule>
          </imsss:rollupRules>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-14

5.1.6.1.3. <rollupAction> Element

The <rollupAction> element identifies a condition to be applied in the rollup rule [5].

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <rollupAction>

Data Type: The <rollupAction> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <rollupAction> element contains the following elements/attributes:

Attributes:

- action (required). This attribute indicates the desired rollup behavior if the rule evaluates to true. XML Data Type: xs:token. The attribute contains a value of one of the following tokens:
 - O satisfied
 O notSatisfied
 O completed
 O incomplete

Elements:

None

Multiplicity: Occurs 1 and only 1 time in the <rollupRule> element.

Example:

```
<item identifier="MODULE2">
   <title>Module 2 -- Enhancing Images</title>
   <item identifier="PRETEST2">
      <title>Module 2 -- Pretest</title>
       <item identifier="PRETEST_QUESTION4" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION4">
          <title>Question 4</title>
       <item identifier="PRETEST_QUESTION5" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION5">
          <title>Question 5</title>
       <item identifier="PRETEST_QUESTION6" isvisible = "false"</pre>
             identifierref="RESOURCE_QUESTION6">
          <title>Question 6</title>
       <imsss:sequencing>
          <imsss:rollupRules >
             <imsss:rollupRule childActivitySet = "all">
                <imsss:rollupConditions>
                    <imsss:rollupCondition condition = "attempted"/>
                </imsss:rollupConditions>
                <imsss:rollupAction action = "completed"/>
             </imsss:rollupRule>
          </imsss:rollupRules>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-15

5.1.7. <objectives> Element

The <objectives> element is the container for the set of objectives that are to be associated with an activity [5]. Each activity must have at least one primary objective and may have an unlimited number of objectives.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <objectives>

Data Type: The <objectives> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <objectives> element contains the following elements/attributes:

Attributes:

• None

Elements:

- <primaryObjective>
- <objective>

Multiplicity: Occurs 0 or 1 time in the <sequencing> element.

```
<item identifier="POSTTEST1">
   <title>Module 1 -- Posttest</title>
      <item identifier="POSTTEST_QUESTION1" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION1">
         <title>Question 1</title>
      </item>
      <item identifier="POSTTEST_QUESTION2" isvisible = "false"</pre>
            identifierref="RESOURCE OUESTION2">
         <title>Question 2</title>
      </item>
      <item identifier="POSTTEST_QUESTION3" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION3">
         <title>Question 3</title>
      </item>
      <imsss:sequencing>
         <imsss:objectives>
             <imsss:primaryObjective objectiveID = "PRIMARYOBJ"</pre>
                satisfiedByMeasure = "true">
                    <imsss:minNormalizedMeasure>0.6</imsss:minNormalizedMeasure>
                    <imsss:mapInfo targetObjectiveID = "obj_module_1"</pre>
                       readNormalizedMeasure = "false"
                       writeSatisfiedStatus = "true" />
             </imsss:primaryObjective>
          </imsss:objectives>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-16

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

Data Type: The <pri>primaryObjective> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <pri>primaryObjective> element contains the following elements/attributes:

Attributes:

• satisfiedByMeasure (optional, default value = false). This attribute indicates that the <minNormalizeMeasure> shall be used (if value is set to true) in place of any other method to determine if the objective associated with the activity is satisfied [5]. XML Data Type: xs:boolean.

• objectiveID (optional). The identifier of the objective associated with the activity [5]. XML Data Type: xs:anyURI.

Elements:

- <minNormalizedMeasure>
- <mapInfo>

Multiplicity: Occurs 1 and only 1 time in the <objectives> element.

Example:

```
<item identifier="POSTTEST1">
   <title>Module 1 -- Posttest</title>
      <item identifier="POSTTEST_QUESTION1" isvisible = "false"</pre>
            identifierref="RESOURCE OUESTION1">
         <title>Question 1</title>
      <item identifier="POSTTEST_QUESTION2" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION2">
         <title>Question 2</title>
      <item identifier="POSTTEST_QUESTION3" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION3">
         <title>Question 3</title>
      </item>
      <imsss:sequencing>
         <imsss:objectives>
             <imsss:primaryObjective objectiveID = "PRIMARYOBJ"</pre>
                satisfiedByMeasure = "true">
                    <imsss:minNormalizedMeasure>0.6</imsss:minNormalizedMeasure>
                    <imsss:mapInfo targetObjectiveID = "obj_module_1"</pre>
                       readNormalizedMeasure = "false"
                       writeSatisfiedStatus = "true" />
             </imsss:primaryObjective>
          </imsss:objectives>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-17

5.1.7.1.1. <minNormalizedMeasure> Element

The <minNormalizedMeasure> element identifies minimum satisfaction measure for the objective [5]. The value is normalized between -1 and 1 (inclusive).

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <minNormalizedMeasure>

Data Type: The <minNormalizedMeasure> element's value shall be of type xs:decimal. The default value if no value is provide is 1.0.

Multiplicity: Occurs 0 or 1 time in the primaryObjective> and <objective>

```
<item identifier="POSTTEST1">
   <title>Module 1 -- Posttest</title>
      <item identifier="POSTTEST_QUESTION1" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION1">
         <title>Question 1</title>
      </item>
      <item identifier="POSTTEST_QUESTION2" isvisible = "false"</pre>
            identifierref="RESOURCE OUESTION2">
         <title>Question 2</title>
      <item identifier="POSTTEST_QUESTION3" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION3">
         <title>Question 3</title>
      </item>
      <imsss:sequencing>
         <imsss:objectives>
             <imsss:primaryObjective objectiveID = "PRIMARYOBJ"</pre>
                satisfiedByMeasure = "true">
                    <imsss:minNormalizedMeasure>0.6</imsss:minNormalizedMeasure>
                    <imsss:mapInfo targetObjectiveID = "obj_module_1"</pre>
                       readNormalizedMeasure = "false"
                       writeSatisfiedStatus = "true" />
             </imsss:primaryObjective>
          </imsss:objectives>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-18

5.1.7.1.2. <mapInfo> Element

The <mapInfo> element is the container for the objective map description. This defines the mapping of an activity's local objective information to and from a shared global objective. Each activity may have an unlimited number of objective maps.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <mapInfo>

Data Type: The <mapInfo> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <mapInfo> element contains the following elements/attributes:

Attributes:

- targetObjectiveID (required). The identifier of the global shared objective targeted for the mapping [5]. XML Data Type: xs:anyURI.
- readSatisfiedStatus (optional, default value = true). This attribute indicates that the satisfaction status for the identified local objective should be retrieved (true or false) from the identified shared global objective when the progress for the local objective is undefined [5]. XML Data Type: xs:boolean

- readNormalizedMeasure (optional, default value = true). This attribute indicates that the normalized measure for the identified local objective should be retrieved (true or false) from the identified shared global objective when the measure for the local objective is undefined [5].XML Data Type: xs:boolean
- writeSatisfiedStatus (optional, default value = false). This attribute indicates that the satisfaction status for the identified local objective should be transferred (true or false) to the identified shared global objective upon termination (Termination("")) of the attempt on the activity. [5]. XML Data Type: xs:boolean
- writeNormalizedMeasure (optional, default value = false). This attribute indicates that the normalized measure for the identified local objective should be transferred (true or false) to the identified shared global objective upon termination (Termination("")) of the attempt on the activity. [5]. XML Data Type: xs:boolean

Elements:

None

Multiplicity: Occurs 0 or More times on the crimaryObjective> and <objective>

Example:

```
<item identifier="POSTTEST1">
   <title>Module 1 -- Posttest</title>
      <item identifier="POSTTEST_QUESTION1" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION1">
         <title>Question 1</title>
      </item>
      <item identifier="POSTTEST_QUESTION2" isvisible = "false"</pre>
            identifierref="RESOURCE OUESTION2">
         <title>Question 2</title>
      </item>
      <item identifier="POSTTEST_QUESTION3" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION3">
         <title>Ouestion 3</title>
      <imsss:sequencing>
         <imsss:objectives>
             <imsss:primaryObjective objectiveID = "PRIMARYOBJ"</pre>
                satisfiedByMeasure = "true">
                    <imsss:minNormalizedMeasure>0.6</imsss:minNormalizedMeasure>
                    <imsss:mapInfo targetObjectiveID = "obj module 1"</pre>
                       readNormalizedMeasure = "false"
                       writeSatisfiedStatus = "true" />
             </imsss:primaryObjective>
          </imsss:objectives>
       </imsss:sequencing>
    </item>
</item>
```

Code Illustration 5-19

5.1.7.2. <objective> Element

The <objective> element identifies objectives that do not contribute to rollup associated with the activity. This element can only exist if a <pri>primaryObjective> has been defined.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <objective>

Data Type: The <objective> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <objective> element contains the following elements/attributes:

Attributes:

- satisfiedByMeasure (optional, default value = false). This attribute indicates that the <minNormalizeMeasure> shall be used (if value is set to true) in place of any other method to determine if the objective associated with the activity is satisfied [5]. XML Data Type: xs:boolean.
- objectiveID (mandatory). The identifier of the objective associated with the activity [5]. XML Data Type: xs:anyURI.

Elements:

- <minNormalizedMeasure> (Refer to Section 5.1.7.1.1: <minNormalizedMeasure>)
- <mapInfo> (Refer to Section 5.1.7.1.2: <mapInfo>)

Multiplicity: Occurs 0 or More times in the <objectives> element.

```
<item identifier="POSTTEST1">
   <title>Module 1 -- Posttest</title>
      <item identifier="POSTTEST_QUESTION1" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION1">
         <title>Question 1</title>
      </item>
      <item identifier="POSTTEST_QUESTION2" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION2">
         <title>Question 2</title>
      </item>
      <item identifier="POSTTEST_QUESTION3" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION3">
         <title>Question 3</title>
      </item>
   <imsss:sequencing>
      <imsss:objectives>
         <imsss:primaryObjective objectiveID = "PRIMARYOBJ" />
         <imsss:objective objectiveID="obj_module_1">
            <imsss:mapInfo targetObjectiveID="obj_module_1"</pre>
                   readSatisfiedStatus = "false"
                   readNormalizedMeasure = "false"
                   writeSatisfiedStatus = "true" />
         </imsss:objective>
      </imsss:objectives>
   </imsss:sequencing>
</item>
```

Code Illustration 5-20

5.1.8. <randomizationControls> Element

The <randomizationControls> element is the container for the descriptions of how children of an activity should be ordered during the sequence process.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <randomizationControls>

Data Type: The <randomizationControls> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <randomizationControls> element contains the following elements/attributes:

Attributes:

- randomizationTiming (optional, default = never). This attribute indicates when the ordering of the children of the activity should occur [5]. XML Data Type: xs:token. The attribute contains a value of one of the following tokens:
 - O never
 - O once
 - O onEachNewAttempt
- selectCount (optional, default value = 0). This attribute indicates the number of child activities that must be selected from the set of child activities associated with the activity [5]. XML Data Type: xs:nonNegativeInteger.
- reorderChildren (optional, default value = false). This attribute indicates that the order of the child activities is randomized [5]. XML Data Type: xs:boolean
- selectionTiming (optional, default = never) This attribute indicates when the selection should occur. XML Data Type: xs:token. The attribute contains a value of one of the following tokens:
 - O never
 - O once
 - O onEachNewAttempt

Elements:

None

Multiplicity: Occurs 0 or 1 time in the <sequencing> element.

```
<item identifier="POSTTEST1">
   <title>Module 1 -- Posttest</title>
      <item identifier="POSTTEST_QUESTION1" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION1">
         <title>Question 1</title>
      </item>
      <item identifier="POSTTEST_QUESTION2" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION2">
         <title>Question 2</title>
      </item>
      <item identifier="POSTTEST_QUESTION3" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION3">
         <title>Question 3</title>
      </item>
   <imsss:sequencing>
      <imsss:objectives>
         <imsss:primaryObjective objectiveID = "PRIMARYOBJ" />
         <imsss:objective objectiveID="obj_module_1">
            <imsss:mapInfo targetObjectiveID="obj_module_1"</pre>
                   readSatisfiedStatus = "false"
                   readNormalizedMeasure = "false"
                   writeSatisfiedStatus = "true" />
         </imsss:objective>
      </imsss:objectives>
   </imsss:sequencing>
</item>
```

Code Illustration 5-21

5.1.9. <deliveryControls> Element

The <deliveryControls> element is the container for the descriptions of how children of an activity should be ordered during the sequence process.

XML Namespace: http://www.imsglobal.org/xsd/imsss

XML Namespace Prefix: imsss

XML Binding Representation: <deliveryControls>

Data Type: The <deliveryControls> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <deliveryControls> element contains the following elements/attributes:

Attributes:

- tracked (optional, default value = true). This attribute indicates that the objective progress information and activity/attempt progress information for the attempt should be recorded (true or false) and the data will contribute to the rollup for its parent activity [5]. XML Data Type: xs:boolean.
- completionSetByContent (optional, default value = false). This attribute indicates that the attempt completion status for the activity will be set by the SCO (true or false) [5]. XML Data Type: xs:boolean
- objectiveSetByContent (optional, default value = false). This attribute indicates that the objective satisfied status for the activity's associated objective that contributes to rollup will be set by the SCO. XML Data Type: xs:boolean.

Elements:

None

Multiplicity: Occurs 0 or 1 time in the <sequencing> element.

Example:

Code Illustration 5-22

5.1.10. <constrainedChoiceConsiderations> Element

The <adlseq:constrainedChoiceConsiderations> element is the container for the descriptions of how choice navigation requests should be constrained during the sequencing process. The constrained choice only applies to the activity for which it is defined.

XML Namespace: http://www.adlnet.org/xsd/adlseq_v1p3

XML Namespace Prefix: adlseq

XML Binding Representation: <constrainedChoiceConsiderations>

Data Type: The <constrainedChoiceConsiderations> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <constrainedChoiceConsiderations> element contains the following elements/attributes:

Attributes:

- preventActivation (optional, default value = false). This attribute indicates that attempts on children activities should not begin unless the current activity is the parent. XML Data Type: xs:boolean.
- constrainChoice (optional, default value = false). This attribute indicates that only activities, which are logically "next" from the constrained activities, can be targets of a choice navigation request. XML Data Type: xs:boolean

Elements:

None

Multiplicity: Occurs 0 or 1 time in the <sequencing> element.

```
<item identifier="Module1">
   <item identifier="EXAM1">
      <title>Module 1 -- Exam</title>
      <item identifier="QUESTION1" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION1">
         <title>Question 1</title>
      </item>
      <item identifier="QUESTION2" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION2">
         <title>Question 2</title>
      <item identifier="QUESTION3" isvisible = "false"</pre>
            identifierref="RESOURCE_QUESTION3">
         <title>Question 3</title>
      </item>
      <imsss:sequencing>
         <imsss:controlMode choice="false" choiceExit ="false" flow="true"</pre>
                            forwardOnly="true"/>
         <imsss:rollupRules >
            <imsss:rollupRule childActivitySet="all">
               <imsss:rollupConditions>
                  <imsss:rollupCondition condition="attempted"/>
               </imsss:rollupConditions>
               <imsss:rollupAction action="completed"/>
            </imsss:rollupRule>
         </imsss:rollupRules>
         <imsss:objectives>
            <imsss:primaryObjective satisfiedByMeasure="true">
               <imsss:minNormalizedMeasure>0.6</imsss:minNormalizedMeasure>
            </imsss:primaryObjective>
         </imsss:objectives>
      </imsss:sequencing>
   </item>
   <imsss:sequencing>
      <imsss:controlMode flow = "true"/>
         <imsss:sequencingRules>
            <imsss:exitConditionRule>
               <imsss:ruleConditions>
                  <imsss:ruleCondition condition = "completed"/>
               </imsss:ruleConditions>
               <imsss:ruleAction action = "exit"/>
            </imsss:exitConditionRule>
         </imsss:sequencingRules>
         <adlseq:constrainedChoiceConsiderations constrainChoice = "true" />
   </imsss:sequencing>
</item>
```

Code Illustration 5-23

5.1.11. <rollupConsiderations> Element

The <adlseq:rollupConsiderations> element is the container for the descriptions of when an activity should be included in the rollup process.

XML Namespace: http://www.adlnet.org/xsd/adlseq_v1p3

XML Namespace Prefix: adlseq

XML Binding Representation: <rollupConsiderations>

Data Type: The <rollupConsiderations> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <rollupConsiderations> element contains the following elements/attributes:

Attributes:

- requiredForSatisfied (optional, default value = always). This attribute indicates the condition under which the activity is included in its parent's evaluation of a satisfied rollup rule. XML Data Type: xs:token.
- requiredForNotSatisfied (optional, default value = always). This attribute indicates the condition under which the activity is included in its parent's evaluation of a not satisfied rollup rule. XML Data Type: xs:token.
- requiredForCompleted (optional, default value = always). This attribute indicates the condition under which the activity is included in its parent's evaluation of a completed rollup rule. XML Data Type: xs:token.
- requiredForIncomplete (optional, default value = always). This attribute indicates the condition under which the activity is included in its parent's evaluation of a incomplete rollup rule. XML Data Type: xs:token.
- measureSatisfactionIfActive (optional, default value = false). This attribute indicates if the measure should be used to determine satisfaction during rollup when the activity is active. XML Data Type: xs:boolean.

Each of the attributes defined above can have a value of one of the following restricted tokens:

- always (default): The activity is always included in rollup rule processing.
- ifAttempted: The activity is included in the rollup processes if the activity was attempted.
- ifNotSkipped: The activity is included in the rollup processes if the activity was not skipped.
- ifNotSuspended: The activity is included in the rollup processes if the activity was not suspended.

Elements:

None

Multiplicity: Occurs 0 or 1 time in the <sequencing> element.

Example:

```
<item identifier="POSTTEST3">
   <title>Module 3 -- Posttest</title>
   <item identifier="POSTTEST_QUESTION7" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION7>
      <title>Question 7</title>
   </item>
   <item identifier="POSTTEST_QUESTION8" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION8">
      <title>Question 8</title>
   </item>
   <item identifier="POSTTEST_QUESTION9" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION9">
      <title>Question 9</title>
   </item>
   <imsss:sequencing>
      <imsss:controlMode choice = "false" choiceExit = "false" flow = "true"</pre>
                          forwardOnly = "true"/>
      <imsss:sequencingRules>
         <imsss:preConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "always"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "hiddenFromChoice"/>
         </imsss:preConditionRule>
         <adlseq:rollupConsiderations measureSatisfactionIfActive = "false"</pre>
                 requiredForCompleted = "ifNotSkipped" />
   </imsss:sequencing>
</item>
```

Code Illustration 5-24

5.1.12. <sequencingCollection> Element

There are situations where a set of sequencing rules (those defined inside of a <sequencing> element) can be reused. The XML Binding of the IMS SS Specification defines an element, <sequencingCollection> that acts as a container for the set of sequencing rules. The reuse happens when the IDRef attribute of the <sequencing> element references an ID attribute of a <sequencing> element that it is a child element of the <sequencingCollection>. If a <sequencing> element uses both the "IDRef" attribute and in-line definition of sequencing rules, any top-level element defined inline overrides any similar element defined in the referenced element.

Some characteristics and requirements of a sequencing collection that are important to note include:

- 1. If a <sequencingCollection> is desired, one and only one sequencing collection shall exist.
- 2. If a <sequencing> element is set up to reference a <sequencing> element defined in a sequencing collection, the "IDRef" attribute is mandatory and shall reference an "ID" specified by the <sequencing> element defined in the sequencing collection.
- 3. If a <sequencing> element is set up to reference a <sequencing> element defined in a sequencing collection, the "ID" on the in-line <sequencing> element is optional.
- 4. For all <sequencing> elements defined in the sequencing collection, the "ID" attribute is mandatory and the "IDRef" attribute is not permitted. This requirement is in place to avoid the "chaining" of sequencing rules. This requirement may be relaxed in the future, however more use cases for the use of "chaining" sequencing rules are required.

Attributes:

None

Elements:

• <sequencing>, the sequencing element shall exist 1 or more times if a <sequencingCollection> is used to define a set of sequencing rules.

Multiplicity: The <sequencingCollection> element shall exist 0 or 1 time as a child of the <imscp:manifest> element.

```
<item identifier="PRETEST1">
   <title>Module 1 -- Pretest</title>
   <item identifier="PRETEST_QUESTION1" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION1">
      <title>Question 1</title>
   </item>
   <item identifier="PRETEST_QUESTION2" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION2">
      <title>Question 2</title>
   <item identifier="PRETEST_QUESTION3" isvisible = "false"</pre>
         identifierref="RESOURCE_QUESTION3">
      <title>Question 3</title>
   </item>
   <imsss:sequencing IDRef = "pretest">
      <imsss:objectives>
         <imsss:primaryObjective objectiveID = "PRIMARYOBJ"</pre>
                satisfiedByMeasure = "true">
            <imsss:minNormalizedMeasure>0.6</imsss:minNormalizedMeasure>
            <imsss:mapInfo targetObjectiveID = "obj_module_1"</pre>
                   readNormalizedMeasure = "false"
                   writeSatisfiedStatus = "true"
                   writeNormalizedMeasure = "true" />
         </imsss:primaryObjective>
      </imsss:objectives>
   </imsss:sequencing>
</item>
<!-- Other Manifest data -->
<imsss:sequencingCollection>
   <imsss:sequencing ID = "pretest">
      <imsss:controlMode choice = "false" choiceExit = "false" flow = "true"</pre>
            forwardOnly = "true"/>
      <imsss:sequencingRules>
         <imsss:preConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "completed"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "disabled"/>
         </imsss:preConditionRule>
         <imsss:preConditionRule>
            <imsss:ruleConditions>
               <imsss:ruleCondition condition = "satisfied"/>
            </imsss:ruleConditions>
            <imsss:ruleAction action = "skip"/>
         </imsss:preConditionRule>
      </imsss:sequencingRules>
   </imsss:sequencing>
</imsss:sequencingCollection>
```

Code Illustration 5-25

5.2. Presentation/Navigation Information

SCORM defines presentation/navigation guidance to coincide with the IMS Simple Sequencing Specification. ADL plans to continue gathering use cases and requirements from the ADL Community on presentation and navigation.

The XML Binding of the presentation/navigation information is handled through an extension to the Content Packaging Manifest XML Schema. A new element called <adlnav:presentation> has been specified. The <adlnav:presentation> element contains a single sub-element called <navigationInterface>. The <adlnav:navigationInterface> element has a sub-element called <adlnav:hideLMSUI>.

5.2.1.1. cpresentation> Element

The resentation> element is a container element that encapsulates presentation information for a given learning activity.

XML Namespace: http://www.adlnet.org/xsd/adlnav_v1p3

XML Namespace Prefix: adlnav

Data Type: The cpresentation> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The cpresentation> element contains the following elements/attributes:

Attributes:

• None

Elements:

<navigationInterface>

Multiplicity: The resentation> element shall occur 0 or 1 time within the <imscp:item> element.

Code Illustration 5-26

5.2.1.1.1. <navigationInterface> Element

The <navigationInterface> element is a container element that encapsulates navigation interface presentation requirements for a given learning activity.

XML Namespace: http://www.adlnet.org/xsd/adlnav_v1p3

XML Namespace Prefix: adlnav

XML Binding Representation: <navigationInterface>

Data Type: The <navigationInterface> element is a parent element. Parent elements have no values associated with them. Parent elements act as "containers" for other elements/attributes. The <navigationInterface> element contains the following elements/attributes:

Attributes:

None

Elements:

<hideLMSUT>

Example:

Code Illustration 5-27

5.2.1.1.1.1. <hideLMSUI> Element

The <hidelmsui> element indicates that the LMS should not provide user interface devices that enable the learner to trigger specific events.

XML Namespace: http://www.adlnet.org/xsd/adlnav_v1p3

XML Namespace Prefix: adlnav

XML Binding Representation: <hidelmsul>

Data Type: The <hidelmsul> element is represented as a xs:string. The string is a restricted vocabulary token. By default, if the values are not listed, then the LMS shall provide a user interface device to allow for the following navigation requests. The token shall be one of the following:

- previous: If specified, the LMS shall not display a "Previous" navigation device when a child of this activity cluster is the current activity.
- continue: If specified, the LMS shall not display a "Continue" navigation device when a child of this activity cluster is the current activity.
- exit: If specified, the LMS shall not display a "Exit" navigation device when a child of this activity cluster is the current activity.
- abandon: If specified, the LMS shall not display a "Abandon" navigation device when a child of this activity cluster is the current activity.

Attributes:

• None

Elements:

None

Multiplicity: The <hidelmsul> element shall occur 0 or More times within the <navigationInterface> element.

Example:

Code Illustration 5-28

5.3. Relationship to Content Packaging

The IMS Content Packaging Specification provides a structure for relating a learning activity to a content resource – the <imscp:item> element and its relationship to a <imscp:resource> element. Furthermore, <imscp:item> elements can be clustered into collections, with such collections contained in a parent <imscp:organization> element, as learning activities may be clustered together in a parent activity or activities. Therefore, IMS SS maps the concept of a learning activity to an <imscp:item> element, a collection of <imscp:item> elements within an <imscp:organization> element and to an <imscp:organization> element itself as defined by the Content Packaging Specification. The Content Packaging XML Binding is extended by this specification to define how sequencing information is associated with packaged content.

The process of defining a specific sequence of learning activities begins with the creation of an aggregation of content to be interchanged using a SCORM Content Aggregation Application Profile of the IMS Content Package specification. As shown in the figure below, the Content Packaging <imscp:organization> element and each <imscp:item> element within it can have defined sequencing behaviors through the association of sequencing information:

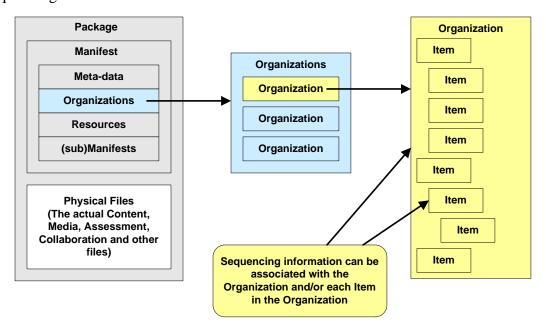
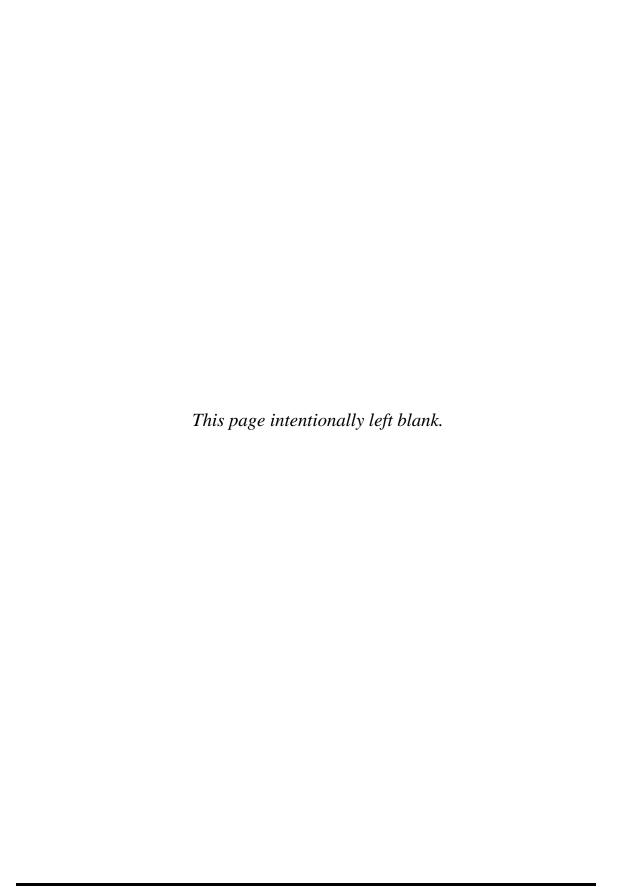


Figure 5.3a: Content Packaging Structure

All SCORM-conformant Content Aggregation packages include, by default, sequencing information. If a SCORM Content Package does not include any sequencing rules, the implied default behavior is to allow a learner to freely choose any activity with no guidance or constraints.


5.3.1.1. Changes to the SCORM Version 1.2 Content Package Profiles

The SCORM Content Package Application Profiles include several elements required by LMSs to process SCORM Content Packages. These elements are included in the *adlcp* namespace and were applied as an extension to the IMS Content Packaging specification.

The IMS Simple Sequencing Specification defines several elements that serve the same function as *adlcp* namespace elements. Where appropriate, *adlcp* namespace elements have been replaced with their corresponding IMS Simple Sequencing elements.

The following listing describes the deprecated elements and their corresponding replacement:

- <adlcp:prerequisites>. This element is deprecated and shall not be used in a SCORM CAM Version 1.3 manifest. The element does not directly have a single replacement element defined in the IMS Simple Sequencing, however the effects and behaviors can be exhibited by using a combination of sequencing rules.
- <adlcp:masteryscore>. This element is deprecated and replaced by the IMS element: <imsss:minNormalizedMeasure> defined on the <imsss:primaryObjective> element (Refer to Section 5.1.7.1.1: <minNormalizedMeasure>)
- <adlcp:maxtimeallowed>. This element is deprecated and replaced by the IMS attribute attemptAbsoluteDurationLimit defined on the <imsss:limitConditions> element (Refer to Section 5.1.4: < limitConditions> for more details).

APPENDIX AAcronym Listing

This page intentionally left blank.

Acronym Listing

ADL Advanced Distributed Learning AICC Aviation Industry CBT Committee API Application Program Interface			
API Application Program Interface			
ARIADNE Alliance of Remote Instructional Authoring & Distribu	tion		
Networks for Europe			
CAM Content Aggregation Model	Content Aggregation Model		
CBT Computer-Based Training	Computer-Based Training		
IEEE Institute of Electrical and Electronics Engineers	Institute of Electrical and Electronics Engineers		
LMS Learning Management System	Learning Management System		
LOM Learning Objects Metadata	Learning Objects Metadata		
LTSC Learning Technology Standards Committee	Learning Technology Standards Committee		
PIF Package Interchange File	Package Interchange File		
RTE Run-Time Environment	Run-Time Environment		
SCO Sharable Content Object	Sharable Content Object		
SCORM Sharable Content Object Reference Model	Sharable Content Object Reference Model		
SN Sequencing and Navigation	Sequencing and Navigation		
SS Simple Sequencing	Simple Sequencing		
URI Universal Resource Indicator	Universal Resource Indicator		
URN Universal Resource Name	Universal Resource Name		
XML Extensible Markup Language	Extensible Markup Language		
XSD XML Schema Definition	XML Schema Definition		

This page intentionally left blank.

APPENDIX B References

This page intentionally left blank.

References

1. IEEE 1484.11.2 Standard for Learning Technology – ECMAScript Application Programming Interface for Content to Runtime Services Communication. November 10,2003

Available at: http://ltsc.ieee.org/

2. *SCORM Run-Time Environment Version 1.3*, Advanced Distributed Learning, January 30, 2004

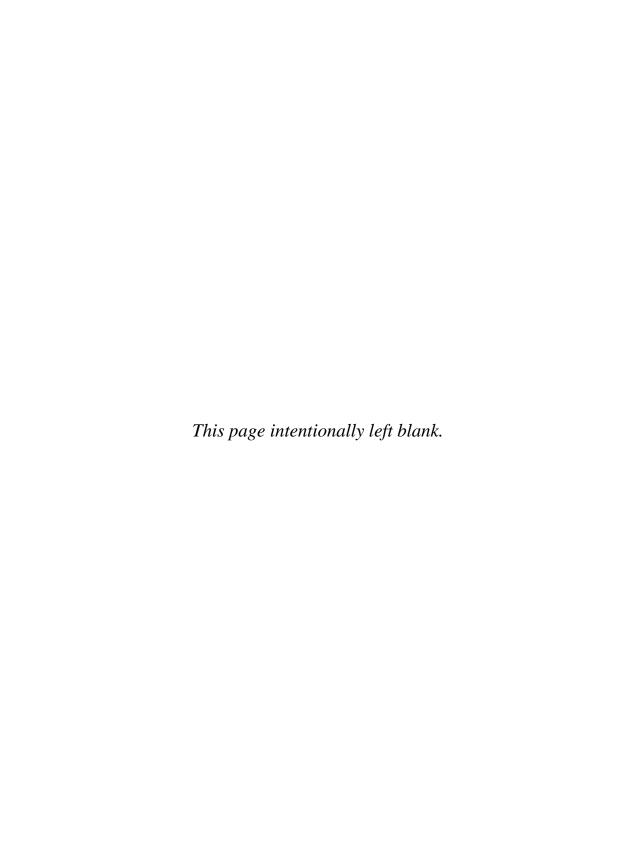
Available at: http://www.adlnet.org/

3. IMS Content Packaging Information Model, Version 1.1.3 Final Specification. July, 2003

Available at: http://www.imsglobal.org/

- 4. Aviation Industry CBT Committee (AICC) Computer Managed Instruction Guidelines for Interoperability (CMI001) Version 3.5. April 2, 2001 Available at: http://www.aicc.org/
- 5. *IMS Simple Sequencing Behavior and Information Model* v1.0 Final Specification, IMS Global Learning Consortium, Inc., March 2003
 Available at: http://www.imsproject.org/.
- 6. Extensible Markup Language (XML) 1.0 (Second Edition). October 6, 2000. Available at: http://www.w3.org/
- 7. *XML Base*. June 27, 2001 Available at: http://www.w3.org/
- 8. *IETF RFC 2396:1998, Universal Resource Identifiers (URI): Generic Syntax.* Available at: http://www.ietf.org/
- 9. IETF RFC 2426:1998, vCard MIME Directory Profile
- 10. ISO/IEC 10646-1:2000, Information technology—Universal multiple-octet coded character set –Part 1: Architecture and basic multilingual plane.
- 11. *IEEE 1484.12.1-2002 Learning Object Metadata Standard*. Available at: http://www.ieee.org/
- 12. IETF RFC 1951 DEFLATE Compressed Data Format Specification version 1.3, May 1996

Available at: http://www.ietf.org/


13. XML Schema Part 2: Datatypes, W3C Recommendation 02 May 2001, Available at: http://www.w3.org/

- 14. IEEE 1484.12.3 Draft Standard for Extensible Markup Language (XML) Binding for Learning Object Metadata Data Model
- 15. *IMS Content Packaging Best Practice Guide*, Version 1.1.3 Final Specification, June 2003

Available at: http://www.imsglobal.org/

16. SCORM Version 1.32004 Run-Time Environment Model Version 1.3, Advanced Distributed Learning, January 30, 2004
Available at: http://www.adlnet.org/

APPENDIX C Document Revison History

Document Revision History

SCORM Version	Release Date	Description of Change
1.3 Working Draft 1	22-Oct-03	 Updates to SCORM Content Packaging to include changes introduced by the IMS Content Packaging Specification Version 1.1.3 Updates to the SCORM Meta-data to include changes introduced by the standardization of IEEE 1484.12.1-2002 and IEEE 1484.12.3 Draft Standard for Extensible Markup Language (XML) Binding for Learning Object Metadata Data Model Updates to include IMS Simple Sequencing Version 1.0 support. Inclusion of support for Navigation requirements due to inclusion of IMS Simple Sequencing Version 1.0.
CAM Version 1.3	30-Jan-04	 Updates include: Clarification and changes to definitions of content aggregation vs. content organization Name change to SCORM Meta-data Application Profiles: Package-level Meta-data changed to Content Aggregation Meta-data, Content Aggregation Meta-data changed to Content Organization Meta-data Updates to Section 3.3.2 Organizations to clarify definition of a content organization. Added additional tables to Section 3.4.1 and Section 4.2 to help explain table formats.