
Performance and scalability of EJB applications
Emmanuel Cecchet, Julie Marguerite and Willy Zwaenepoel

Rice University
{cecchet, margueri, willy}@rice.edu

ABSTRACT
We investigate the combined effect of application implementation
method, container design, and efficiency of communication layers
on the performance scalability of J2EE application servers by
detailed measurement and profiling of an auction site server.

We have implemented three versions of the auction site. The first
version uses stateless session beans with bean-managed
persistence, making only minimal use of the services provided by
the Enterprise JavaBeans (EJB) container. The second version
makes extensive use of the container services using entity beans
with container-managed persistence. The third version applies the
session façade pattern, using session beans as a façade to access
entity beans. We evaluate these different implementations on two
popular open- source EJB containers with orthogonal designs.
JBoss uses dynamic proxies to generate the container classes at
run time, making an extensive use of reflection. JOnAS pre-
complies classes during deployment, minimizing the use of
reflection at run time. We also evaluate the communication
optimizations provided by each of these EJB containers.

The most important factor in determining performance is the
implementation method. EJB applications with session beans
perform as well as a Java servlet implementation and an order-of-
magnitude better than most of the implementations based on
entity beans. Use of session façade beans improves performance
for entity beans, but only if local communication is very efficient.
Otherwise, session façade beans degrade performance.

For the implementation using session beans, communication cost
forms the major component of the execution time on the EJB
server. The design of the container has little effect on
performance. For implementations using session façade beans,
local communication cost is critically important. With entity
beans, the design of the container becomes important as well. In
particular, the cost of reflection affects performance.

Keywords
EJB container design, performance, scalability, communication
optimization, profiling.

1. INTRODUCTION
As the popularity of dynamic-content Web sites increases rapidly,
there is a need for maintainable, reliable, available, secure and
above all scalable platforms to host those sites. The Java™ 2

Platform Enterprise Edition (J2EE) specification is Sun’s solution
to address these issues. J2EE has been primarily targeted at n-tier
application development [2]. It defines a set of Java APIs to build
applications, and provides a runtime infrastructure for hosting
applications.

Four different containers are defined in the J2EE specification to
provide a runtime for application components as depicted in
figure 1. The Enterprise JavaBeans (EJB) server is often the
bottleneck in J2EE applications [7]. This paper seeks to explain
the effect of application implementation methods, container
design, and efficiency of communication layers on the
performance of an EJB server and the overall application. We
have developed three different EJB implementations of an auction
site modeled after eBay.com [11]. The semantics are the same for
each implementation of the application.

We use three different implementation methods: stateless session
beans, entity beans, and entity beans with session façade beans.
For further comparison, we have also implemented a Java servlet
version of the application that does not use EJB.

We evaluate two orthogonal container designs that are
representative of most EJB containers available at this time. The
dynamic proxy approach, used in the popular JBoss [13] open-
source EJB server, generates the container classes at run time,
making extensive use of reflection. Most commercial
implementations and the JOnAS [15] open source EJB container
use pre-compilation: classes are generated during deployment,
reducing the use of reflection at run time. Reflection is known to
be slow, but it is often claimed that its cost is masked by network
latency or database accesses [1]. We will, however, show that
reflection can be an important factor in determining performance.
We also configure the EJB servers with and without
communication optimizations.

We use open-source software in common use for our experiments:
the Apache Web server [5], the Tomcat servlet server [12], the
JBoss [13] and JOnAS [15] EJB servers and the MySQL [16]
relational database. We have posted all software, configuration
files, and full experiment reports on our web site
http://www.cs.rice.edu/CS/Systems/DynaServer to allow others to
reproduce the results and evaluate the impact of new designs on
performance and scalability.

Each server runs on a separate node. In all cases except one, the
processor on the EJB server is the bottleneck. The memory and
disk are never a limiting resource. The network can reach very
high utilization when few services from the EJB container are
used.

The most important factor in determining performance is the
implementation method. EJB applications with session beans
perform as well as a Java servlet implementation and an order-of-
magnitude better than most of the implementations based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

J2EE Application Server

Web server
Database server

Presentation logic Business logic

h
t
t
p
d Web container

...

h
t
t
p
d EJB container

servlet
servlet

servletservletservlet

Client

Internet

JSP
JSP

JSPJSPJSP

RMI /

IIOP
JNDI JDBC JMS JTA RMI /

IIOP
JNDI JDBC JMS JTA

EJB
EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

Applet container

Applet
Applet

AppletAppletApplet

Application Client
container

Application
Client

JMSJDBC

Figure 1. Enterprise Java Beans integration in the J2EE framework

entity beans. Use of session façade beans improves performance,
but only if local communication is very efficient.

For the implementation using session beans, communication cost
forms the major component of the execution time on the EJB
server. The design of the container has little effect on
performance. For implementations using session façade beans,
local communication cost is critically important. With entity
beans, the design of the container becomes important as well. In
particular, the cost of reflection affects performance.

The outline of the rest of this paper is as follows. Section 2
provides some background on EJB. Section 3 provides detailed
description of the alternative implementation methods, container
designs, and communication optimizations. Section 4 describes
the auction site and provides some complexity measures for the
various implementation methods. Section 5 presents our
experimental environment and our measurement methodology.
Section 6 discusses the results of our experiments. Related work
is presented in Section7. Section 8 concludes the paper.

2. BACKGROUND
An EJB server provides a number of services such as database
access (JDBC), transactions (JTA), messaging (JMS), naming
(JNDI) and management support (JMX). The EJB server manages
one or more EJB containers. The container is responsible for
providing component pooling and lifecycle management, client
session management, database connection pooling, persistence,
transaction management, authentication and access control.

In this paper, we consider two types of EJB: entity beans that map
data stored in the database (usually one entity bean instance per
database table row), and session beans that are used to perform
temporary operations (stateless session beans) or represent
temporary objects (stateful session beans).

A bean developer can choose to manage the persistence in the
bean (Bean Managed Persistence or BMP) or let the container
manage the persistence (Container Managed Persistence or CMP).
In the latter case, a deployment descriptor contains a one-to-one
mapping between bean instance variables and database columns.
The container uses the descriptor to generate the necessary SQL
statements and ensure concurrency control on the database. With
BMP beans the programmer embeds the SQL queries in the bean

code and only uses the database connection pooling and
transaction management services of the container.

3. DESIGN ALTERNATIVES
3.1 Implementation Methods
We implement a servlet version and three EJB versions. The
servlet version implements both the business logic and the
presentation logic in the servlets in the usual manner. We next
describe the three EJB versions.

3.1.1 Session beans with BMP
We use session beans with bean-managed persistence (SB BMP)
to implement the business logic, leaving only the presentation
logic in the servlets as depicted in figure 2.

Session bean

Database

Web container

Servlet

EJB container

Business
logic

Servlet

Web container

Servlet

Database

Presentation
logic

Business
logic

Servlet

Presentation
logic

Business
logic

Presentation
logic

Presentation
logic

Session bean

Business
logic

Figure 2. Session bean implementation

This implementation uses the fewest services from the EJB
container. The session beans benefit from the connection pooling
and the transaction management provided by the EJB server. It
greatly simplifies the servlet code, in which the connection
pooling has to be implemented by hand.

3.1.2 DAO separation with EB CMP
In this implementation, we extract the data access code from the
servlets, and move it into Data Access Objects that we implement
using entity beans with container-managed persistence (EB

CMP). The business logic embedded in the servlets directly
invokes methods on the entity beans that map the data stored in
the database (see top part of figure 3). With CMP, the vast
majority of the SQL queries is generated by the EJB container.
EJB 1.1 CMP, however, requires stateless session beans to
execute complex queries involving joins on multiple tables. To
avoid fine-grain access of getter/setter methods of the beans, we
provide functions that return results populated with the values of
the bean instance attributes.

The goal of this implementation is to evaluate the cost of the
container’s persistence service and the impact of fine-grain
accesses between the Web and EJB containers.

3.1.3 Session façade
The session façade pattern [3] uses stateless session beans as a
façade to abstract the entity components as shown in figure 3. It
reduces the number of business objects that are exposed to the
client over the network, thus providing a uniform coarse-grained
service access layer. Calls between façade and entity beans are
local to the EJB server and can be optimized to reduce the
overhead of multiple network calls (see Section 3.3).

This implementation involves a larger number of beans, and thus
stresses the component pooling of the container. It also exploits
the database connection pooling, transaction manager and
persistence services.

EJB container

Entity

Bean

Servlet

Web container

Servlet

Database

Entity
Bean

Entity
Bean

Business
logic

Business
logic

EJB container

Entity
Bean

Session facade

Web container

Session facade

Database

Entity
Bean

Entity
Bean

Business
logic

Business
logic

Servlet

Servlet

Figure 3. Refactoring the Entity Beans design with a session
façade design pattern

3.2 EJB container design
An EJB container is a component that provides the EJB services
to a particular EJB. It acts as an interface between the client and
the bean. In fact, the client only interacts with the home and
component interfaces that are provided by the container and
forward the calls to the bean. So, each bean access is done
through container-generated classes. There are two main
approaches to design an EJB container, differing in how and when
it generates those classes. With the pre-compiled approach,
container classes are compiled at deployment time. The other
method uses dynamic proxies to generate the classes at run time.

3.2.1 Pre-compiled approach
In a precompiled approach, the container generates custom
implementations of the home and component interfaces so that it
can directly call the appropriate method of the bean instance. The

resulting classes have to be available for the client by way of the
classpath or the ejb-jar file. This is the approach used in most
commercial EJB containers and in the JOnAS EJB container.

The container vendor provides a tool to generate the container
classes. The tool provided with JOnAS is called GenIC. GenIC
generates the source for the container classes for all the beans
defined in the deployment descriptor, and compiles them using
the Java compiler. Then, it generates stubs and skeletons for those
remote objects using the RMI compiler. Finally, it adds the
resulting classes in the ejb-jar file if needed.

3.2.2 Dynamic proxy based container
With this approach, the container uses dynamic proxy technology
[17] to generate the home and component interfaces at run time. A
dynamic proxy is an object generated at run time that implements
some specified interfaces and is responsible for routing the calls
using reflection. Using reflection the proxy can map method
signatures to the corresponding implementations or locate a bean
given the name of the class. The client sends its calls to the proxy
that analyzes and forwards them to the bean using reflection.

In the JBoss container, home and object interfaces are constructed
as dynamic proxies. They use four types of proxy classes: one for
the home interface and three for the component interface
according to the type of the bean (entity, stateless session, stateful
session)

3.3 Communication layer
Remote Method Invocation (RMI) is the object request broker
(ORB) used by EJB. JBoss relies on Sun’s RMI using JRMP
(Java Remote Method Protocol) on top of TCP/IP, but it uses a
specific registry and naming called JNP (Java Naming Provider)
providing hierarchical namespaces. JOnAS can use either Sun’s
RMI or a modular ORB called Jonathan [10]. Jonathan has an
RMI personality called Jeremie. Jeremie uses a different protocol,
GIOP (General Inter-ORB Protocol), and can also optimize local
communication.

To reduce the cost of marshalling, JBoss offers an optimization
that passes objects by reference instead of by value. Although not
compliant to the specification, this optimization is commonly used
and it is the default setting in JBoss. Jeremie also uses this
technique for local calls.

4. APPLICATION
The RUBiS (Rice University Bidding System) models an auction
site. Its design aims to reduce as much as possible the load on the
database server, allowing us to saturate the middle-tier and
determine its maximum throughput and scalability.

4.1 Description
Our auction site defines 26 interactions that can be performed
from the client’s Web browser. Among the most important ones
are browsing items by category or region, bidding, buying or
selling items, leaving comments on other users and consulting
one’s own user page (known as myEbay on eBay [11]). Browsing
items also includes consulting the bid history and the seller’s
information. We define two workload mixes: a browsing mix
made up of only read-only interactions and a bidding mix that
includes 15% read-write interactions.

We sized our system according to observations found on the eBay
Web site. We always have about 33,000 items for sale, distributed

among eBay’s 40 categories and 62 regions. We keep a history of
500,000 past auctions. There is an average of 10 bids per item, or
330,000 entries in the bids table. The users table has 1 million
entries. We assume that users give feedback (comments) for 95%
of the transactions. The new and old comments tables thus contain
about 31,500 and 475,000 comments, respectively. The total size
of the database, including indices, is 1.4GB. More details about
the database configuration can be found in [4].

4.2 Implementation Complexity
Table 1 summarizes the number of classes and the code size
(including comments) of the presentation logic (the servlets) and
the business logic (the EJBs) for each implementation.

Table 1. Number of classes and code size between presentation
and business logic for each implementation

Presentation
logic

Business
logic

Total

C
la

ss
es

 Lines
of
code

C
la

ss
es

 Lines
of
code

C
la

ss
es

 Lines
of
code

Servlets only 25 4590 - - 25 4590

Session beans 24 2650 52 5270 76 7920

DAO (EB CMP) 24 4060 40 7260 64 11320

Session façade 24 2660 85 10780 109 13440

Each bean requires 3 classes: the home interface, the remote
interface and the bean implementation. We also implement a
primary key class for each entity bean. This makes the
implementation of the business logic very verbose, reaching up to
80% of the total application code size.

Although EJBs are easy to write, the number of beans can become
quite large, resulting in a larger code base and negatively affecting
development time and maintenance cost. There are also portability
problems between the two containers, which each have their own
limitations and peculiarities, such as naming conventions. Even in
the common part of the deployment descriptors, both containers
have slightly different conventions, especially for inter-bean
references.

5. EXPERIMENTAL ENVIRONNEMENT
5.1 Client Emulation
We implement a client-browser emulator. A session is a sequence
of interactions for the same customer. For each customer session,
the client emulator opens a persistent HTTP connection to the
Web server and closes it at the end of the session. Each emulated
client waits for a certain think time before initiating the next
interaction. The next interaction is determined by a state transition
matrix that specifies the probability to go from one interaction to
another one.

The think time and session time for all benchmarks are generated
from a negative exponential distribution with a mean of 7 seconds
and 15 minutes, respectively. These numbers are based on clauses
5.3.1.1 and 6.2.1.2 of the TPC-W v1.65 specification [21]. We
vary the load on the site by varying the number of clients. We

have verified that in none of the experiments client emulation is
the bottleneck.

5.2 Software Environment
We use Apache v.1.3.22 as the Web server. We increase the
maximum number of Apache processes to 512. With that value,
the number of Apache processes is never a limit on performance.

The servlet container is Jakarta Tomcat v3.2.4 [12], running on
Sun JDK 1.3.1. The EJB servers are JOnAS v2.4.4 [15] and JBoss
v2.4.4 [13]. These are are the latest stable versions of these
products at the time of this writing. JOnAS v2.4.4 embeds
Jonathan 3.0a5 that can be used for optimized communication.
Both containers implement the EJB 1.1 specification and run on
Sun JDK 1.3.1. For each implementation, we only start those
container services that are necessary to perform the experiment.
We avoid reloading the beans from the database if they were not
modified (tuned updates in JBoss, shared flag/isModified in
JOnAS). For all experiments, the transaction timeout is set to 5
minutes.

We use MySQL v.3.23.43-max [16] as our database server with
the MM-MySQL v2.07 type 4 JDBC driver and MyISAM non-
transactional tables. This means that transaction commands like
begin/commit are accepted but have no effect, and a rollback
generates an exception.. MySQL never becomes the bottleneck in
our experiments

All machines run the 2.4.12 Linux kernel.

5.3 Hardware Platform
The Web server, the servlets server, the EJB server and the
database server each run on a different machine, a PIII 933MHz
CPU with 1GB SDRAM, and two Quantum Atlas 9GB
10,000rpm Ultra160 SCSI disk drives. A number of PII 450MHz
machines run the client emulation software. We use enough client
emulation machines to make sure that the clients do not become a
bottleneck in any of our experiments. All machines are connected
through a switched 100Mbps Ethernet LAN.

5.4 Measurement Methodology
We perform measurements for the three implementations of the
application for each EJB container using non-optimized and
optimized communication layers.

Each experiment is composed of 3 phases. A warm-up phase
initializes the system until it reaches a steady-state throughput
level. We then switch to the steady-state phase during which we
perform all our measurements. Finally, a cool-down phase slows
down the incoming request flow until the end of the experiment.
For all experiments we use the same length of time for each phase.
The auction site uses 2, 15 and 1 minutes. These lengths of time
are chosen by observing when the experiment reaches a steady
state and by observing the length of time necessary to obtain
reproducible results.

To measure the load on each machine, we use the Sysstat utility
[20] that collects CPU, memory, network and disk usage from the
Linux kernel every second. The resulting data files are analyzed
post-mortem to minimize system perturbation during the
experiments.

We perform separate experiments to profile the containers using
the OptimizeIt offline profiling. We use the instrumentation
profiling, which is more suitable for profiling a large number of

threads and small functions than a sampler profiler. Due to the
overhead of the profiler, the peak point is reached earlier for a
given configuration. For each implementation, we choose the
lowest number of clients for which we observe a peak point with
any of the container configurations. For each configuration we
analyze a snapshot of a 10-minute run with this number of clients.

6. EXPERIMENTAL RESULTS
We present the experimental results for each implementation in
the same order they were introduced in section 3.1. For each
implementation, we evaluate up to 5 different configurations
referred to as follows:
- Java Servlets: the Java Servlets implementation,
- JBoss: the JBoss container using JNP and passing objects by
value,
- JOnAS-RMI: the JOnAS container using RMI,
- JBoss optimized calls: the JBoss container using JNP and
passing objects by reference,
- JOnAS-Jeremie: the JOnAS container using the Jeremie
communication layer.

Each point in the graphs represents the best result of three runs of
the experiment for the given number of clients and container
configuration. The difference between runs is minor. A more
complete report of all experimental results, including throughput,
response time and resource usage are available from our Web site
at http://www.cs.rice.edu/CS/Systems/DynaServer/.

6.1 Sessions beans with BMP
Figure 4 reports the throughput in interactions per minute as a
function of number of clients for the browsing mix workload, for
the 5 configurations previously introduced.

For both versions of JBoss, the peak point is reached at 800
clients with nearly 8600 interactions per minute. JOnAS-RMI
peaks at about 8900 interactions per minute, for the same number
of clients. JOnAS-Jeremie scales further, reaching 10150
interactions per minute with 1000 clients. The Java Servlets
implementation shows even better performance with 12000
interactions per minute for 1200 clients.

At the peak point, the CPU utilization with JBoss is around 65%
and the bottleneck appears on the servlet server. The high load on
the servlet server is due to the JBoss stub used by the servlets to
access the JBoss container. For JOnAS-RMI, the CPU on the EJB
server is the bottleneck at the peak point, and the servlet server
CPU utilization is 80%. JOnAS-Jeremie saturates both the EJB,
the servlet and the database server processor at the peak point.
The network bandwidth on the Web server is also very high with
80Mb/s exchanged with the clients and 14Mb/s with the servlets.

Though the bottlenecks are different, we do not observe a
significant difference in performance between JOnAS-RMI and
both versions of JBoss. Due to its more scalable communication
layer JOnAS-Jeremie scales better and offer 33% more throughput
after the peak point, compared to JBoss optimized calls. The Java
Servlets version does not have the RMI overhead, and has direct
access to the database without going through an EJB container.
This explains the better performance of the servlets
implementation.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss

JOnAS - RMI

JBoss optimized calls

JOnAS - Jeremie

Java Servlets

Figure 4. SB BMP implementation throughput in interactions
per minute as a function of number of clients for the browsing
mix using JBoss and JOnAS containers compared with a Java

servlets implementation.

As shown in figure 5, the throughput for the bidding mix changes
the ordering of the best performers. JBoss and JOnAS-RMI still
have the lowest throughput at 6600 interactions per minute with
700 clients, JBoss optimized calls offers a significant
improvement with a peak at 7500 interactions per minute with
800 clients.

JOnAS-Jeremie gives performance comparable to the Java
Servlets until 1100 clients where it peaks at 9750 interactions per
minute. Java Servlets reaches 10440 interactions per minute with
1200 clients.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss

JOnAS - RMI

JBoss optimized calls

JOnAS - Jeremie

Java Servlets

Figure 5. SB BMP implementation throughput in interactions
per minute as a function of number of clients for the bidding

mix using JBoss and JOnAS containers compared with a Java
Servlets implementation.

Figure 6 shows the execution time breakdown resulting from
profiling the SB BMP implementation for the bidding mix at 700
clients (the peak point of the JBoss and JOnAS-RMI
configurations). As expected, communication costs dominate the
execution time in this implementation where few services from the
container are involved. It is also interesting to observe that the
bean code we have written represents less than 1.5 percent of the
total execution time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

JBoss JOnAS RMI JBoss optimized
calls

JOnAS Jeremie

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 6. Execution time breakdown for the SB BMP
implementation for the bidding mix at the peak point of the

JBoss and JOnAS-RMI configurations.

JBoss spends 14.2% of overall CPU time in the container with an
extra 4% for reflection. JOnAS-RMI shows a cost of 5% for the
container and 2.7% for the database connection pooling. The
communication layer is definitely the bottleneck with 69.4% of
the overall processing time for JBoss and 87% for JOnAS-RMI.
This difference in communication cost between JBoss and JOnAS-
RMI is explained by the stub implementation on the client side.
JBoss’s stub can handle some calls locally, avoiding calls over the
network [14]. The reduction in the time spent in communication is
compensated by the overhead of the container. The throughput
remains the same as JOnAS-RMI where the extra communication
cost is compensated by a more efficient container.

JBoss optimized calls gets a 4.6% improvement in communication
cost compared to JBoss. The container overhead remains
proportionally the same (12.1% in the container, 2.1% in
reflection). Due to its more scalable communication layer, JOnAS-
Jeremie spends only 43% in communications, but the generated
container classes are more expensive than the one generated for
RMI. Therefore, the EJB container takes 12.9% of the overall
execution time and 5.5% is consumed by the connection pooling.

In summary, with session beans and bean-managed persistence,
the communication cost dominates the costs associated with the
container. An efficient communication layer leads to better
performance. The container design does not have a significant
impact.

6.2 DAO separation with EB CMP
Figure 7 reports the throughput in interactions per minute as a
function of number of clients for the browsing mix workload,
using the 4 container configurations described in section 6. The
absolute throughput numbers are between 8 (for JOnAS-Jeremie)
and 16 times (for JBoss) lower than with the previous SB BMP
implementation. We terminate the experiments for JBoss and
JOnAS-RMI after 200 clients, because JBoss becomes unable to
handle the load and transactions abort on timeout (the timeout is
set to 5 minutes).

Both JBoss configurations give comparable peak performance,
with 547 and 579 interactions per minute reached with 80 clients
for JBoss and JBoss optimized calls, respectively. JOnAS-RMI
peaks at 939 interactions per minute with 100 clients. Best results

are achieved by JOnAS-Jeremie at 1222 interactions per minute
for 200 clients.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Number of clients

T
h

ro
u

g
h

p
u

t i
n

 r
eq

u
es

ts
/m

in
u

te

JBoss-non optimized

JOnAS-RMI

JBoss-optimized

JOnAS-jeremie

Figure 7. DAO separation with EB BMP implementation
throughput in interactions per minute as a function of number

of clients for the browsing mix using JBoss and JOnAS.

Figure 8 shows the throughput in interactions per minute as a function of
number of clients for the bidding mix. The ordering of the different
configuration in terms of performance is the same as for the browsing
mix. JBoss reaches a peak of 638 interactions per minute for 100 clients.
There is a 37% improvement when passing objects by reference,
resulting in 868 interactions per minute for JBoss optimized calls with
120 clients. The improvement is due to the fact that for each write
interaction, there is a call to a bean assigning unique identifiers that can
be optimized. This interaction does not occur in the browsing mix, and
therefore there is no comparable improvement. JOnAS-RMI achieves
1130 interactions per minute for 140 clients, and JOnAS-Jeremie
achieves 1401 interactions per minute with 180 clients.

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of clients

T
h

ro
u

g
h

tp
u

t
in

 r
eq

u
es

ts
/m

in
u

te
s

JBoss

JOnAS - RMI

JBoss optimized calls

JOnAS - Jeremie

Figure 8. DAO separation EB BMP throughput in interactions
per minute as a function of number of clients for the bidding

mix using JBoss and JOnAS.

Figure 9 shows the execution time breakdown for the EB CMP
implementation for the bidding mix at 80 clients (the peak point
of the JBoss configuration). Compared to the SB BMP
implementation, the container is more heavily involved in the
processing due to the persistence management. The time spent in
the communication layers is significantly reduced. As most of the

code is generated by the container, the overall execution time
spent in our bean classes is less than 0.1%.

The time spent in the JBoss container is more than 40% of which
one fourth is due to reflection. In comparison, the JOnAS
container takes less than 11% of the processing time (and 0.3% in
reflection). Of that 11%, 3.8% is due to the connection pooling
and 1% to the transaction manager. The JBoss’s client stub
optimization does not seem to work with entity beans and the
respective communication time are 54% for JBoss and 47.4% for
JOnAS-RMI.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

JBoss JOnAS RMI JBoss optimized
calls

JOnAS Jeremie

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 9. Execution time breakdown for the entity beans
implementation for the bidding mix at the peak point of the

JBoss configuration.

JBoss optimized calls reduces the time spent in communication to
41.8% of the overall execution time. However, 21.1% is spent in
the container and an additional 7.4% in reflection. Performance is
improved compared to JBoss, but still below what is obtained
with JOnAS, even without communication optimizations. JOnAS-
Jeremie shows a significant improvement with only 23.9% of the
CPU used for communication and 15% for the container. Jeremie
offers again more scalable performance than RMI. Like for the SB
BMP implementation, the container classes for Jeremie are more
expensive than the container classes for RMI, but the
container/communication combination is more efficient and
results in better performance.

In summary, unlike for the SB BMP version, the container design
has the largest impact on performance for EB CMP. Optimized
communications still improve performance but to a lesser extent.

6.3 Session façade implementation
Figure 10 presents the throughput in interactions per minute as a
function of number of clients for the browsing mix using the 4
containers configuration described in section 6.

 Due to the communication overhead between the façade session
beans and the entity beans, both JBoss and JOnAS-RMI perform
worse than with the EB CMP implementation. JBoss peaks at 378
interactions per minute with 60 clients, while JOnAS-RMI
achieves 689 interactions per minute with 100 clients. This
represents almost a 30% drop in performance for both
configurations. As for the previous experiment we do not report
throughput for more than 200 clients due to transaction timeouts.

JBoss optimized calls shows a significant improvement with a
peak at 1081 interactions per minute with 120 clients. The
optimization improves the throughput by a factor of 2.86
compared to JBoss without optimized calls. JOnAS-Jeremie peaks
at 3970 interactions per minute with 440 clients providing a
speedup of 5.3 compared to JBoss optimized calls. The ability of
Jeremie to optimize the local calls clearly shows its benefits here.

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Number of clients
T

h
ro

u
g

h
p

u
t

in
 r

eq
u

es
ts

/m
in

u
te

JBoss

JOnAS - RMI

JBoss optimized calls

JOnAS - Jeremie

Figure 10. Session façade implementation throughput in
interactions per minute as a function of number of clients for

the browsing mix using JBoss and JOnAS.

Figure 11 reports the throughput in interactions per minute as a
function of number of clients for the bidding mix. The scenario is
the same for JBoss and JOnAS-RMI. They peak at 448 and 777
interactions per minute, with 60 and 140 clients respectively.
Inter-bean communication adds to the overall communication
overhead and pulls performance down giving the worst
throughput of all implementations.

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Number of clients

T
h

ro
u

g
h

p
u

t
in

 r
eq

u
es

ts
/m

in
u

te

JBoss

JOnAS - RMI

JBoss optimized calls

JOnAS - Jeremie

Figure 11. Session façade implementation throughput in
interactions per minute as a function of number of clients for

the bidding mix using JBoss and JOnAS.

JBoss optimized calls offers a better performance with a peak at
1507 interactions per minute with 180 clients. However, response
time dramatically increases under saturation till 340 clients where
the transactions take more than 5 minutes to be performed and are
timed out by the transaction manager. Then, the number of
completed interactions drops around 600 per minute.

JOnAS-Jeremie has more scalable behavior and sustains up to
3565 interactions per minute between 380 and 420 clients. This
leads up to a 6.2 factor of improvement compared to JBoss
optimized calls with the same number of clients.

Figure 12 presents the execution time breakdown for the session
façade implementation for the bidding mix at 60 clients (the peak
throughput of the JBoss configuration). Once again our bean code
represents less than 1% of the overall execution time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

JBoss JOnAS RMI JBoss optimized
calls

JOnAS Jeremie

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

Other

Garbage Collector

Security

Naming

MM-MySQL

Connection pooling

Transaction manager

Container

Reflexion

Beans (edu.rice.*)

Communication

Figure 12. Execution time breakdown for the session façade
implementation for the bidding mix at the peak point of the

JBoss configuration.

There is little difference with the EB BMP implementation for
both JBoss and JOnAS-RMI. As communications were already
the bottleneck, they increase by less than 1% and remain the
bottleneck.

As the number of beans and interactions between beans increase,
the time spent in reflection with the JBoss optimized calls
configuration reaches 7% of the overall execution time. The
container itself takes 7.3% of the total time. The call optimization
is visible in the reduction of the CPU utilization dedicated to
communication that drops to 13.1%. For the first time, we observe
than more time is spent in the container than in communications.

JOnAS-Jeremie cuts the communication time by almost a half to
only 7%. The container CPU utilization then represents only 1.8%
of total execution time whereas connection pooling takes 2%. The
larger number of lookups on beans affects 0.35% of the overall
time to the naming directory.

In summary, with session façade beans both the container and
communication layer designs have a significant impact on
performance. With a larger number of beans, reflection proves to
be a significant limitation to scalability. The pre-compiled
approach reduces the time spent in reflection and offers scalable
performance when coupled with an optimized communication
layer such as the one implemented in Jeremie.

6.4 Summary
Figure 13 and figure 14 summarize the peak throughput obtained
for the different implementations and container configurations for
the browsing mix and the bidding mix respectively.

The session beans with bean-managed persistence (SB BMP)
implementation gives the best throughput. The communication

layer is the bottleneck and hides most of the cost of the container.
Therefore, container design has little impact on performance for
this implementation.

0

2000

4000

6000

8000

10000

12000

SB-BMP EB-CMP Session façade

M
ax

im
u

m
 th

ro
u

g
h

p
u

t i
n

 r
eq

u
es

ts
/m

in
u

te

JBoss

JOnAS - RMI

JBoss optimized calls

JOnAS - Jeremie

Figure 13. EJB implementations maximum throughput in
interactions per minute for the browsing mix.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

SB-BMP EB-CMP Session façade

M
ax

im
u

m
 th

ro
u

g
h

p
u

t i
n

 r
eq

u
es

ts
/m

in
u

te

JBoss
JOnAS - RMI
JBoss optimized calls
JOnAS - Jeremie

Figure 14. EJB implementations maximum throughput in
interactions per minute for the bidding mix.

The DAO separation with entity beans and container-managed
persistence (EB CMP) implementation gives the least scalable
results. This is due to the excessively fine-grain access exposed by
the entity beans to the servlets. This implementation, however,
shows that container design has a significant impact on the
performance of EB CMP. The pre-compiled approach of JOnAS
shows better scalability than the dynamic proxy based approach
used by JBoss.

The overhead of reflection is also noticeable in the session façade
implementation. The optimized calls improve throughput for
JBoss at lower loads, but performance does not scale and response
time quickly rises after the peak point. The call optimization is not
sufficient to mask the overhead of reflection in the container.
Only the combination of pre-compiled container classes and an
optimized communication layer such as Jeremie allows for
scalable performance.

The bean code written by the programmer represents at most two
percent of the overall execution time. This confirms that

application implementation method and the middleware design
have the biggest impact on performances. The two have to be
considered in combination, as evidenced by the poor performance
of session façade beans without optimized inter-bean
communication.

7. RELATED WORK
Performance and scalability of J2EE application servers is a very
hot topic in the e-business community. Sun has released the
ECperf specification [18] as a first attempt to standardize the
evaluation of EJB servers. This benchmark is aimed at evaluating
a particular J2EE application server with a single application,
while we target the evaluation of different EJB containers with
various implementations of the same application. Other
benchmarks such as TPCW [21] overload the database tier [4]
preventing evaluation of middle-tier performance under
saturation.

To the best of our knowledge, ours is the first study of EJB
applications scalability analyzing the container and
communication layers designs. [9] gives guidelines for EJB server
comparison, but they use the EJB 1.0 specification and do not
propose an application to perform the comparison. We have made
available the application, container configurations and experiment
results on our Web site
http://www.cs.rice.edu/CS/Systems/DynaServer to allow further
evaluation of other containers.

UrbanCode provides a performance benchmark of design idioms
(design patterns applied to a specific programming language)
[22]. Their conclusions about relative performance between
session beans and entity beans confirm our results. They do not,
however, evaluate the impact of container design or the
communication layer optimization. Allamaraju et al. [2] discuss
container design but conclude that reflection is never an issue,
because its cost is insignificant compared to network latency or
roundtrips to the database. We have shown that reflection can
become a real issue for scalability when container-managed
persistence is used.

To address the issue of inter-bean communications, the EJB CMP
2.0 specification [19] introduces the notion of local and remote
interfaces. As this feature was not implemented in the containers
we have tested, this evaluation will be part of our future work
when the implementation becomes available.

Another solution to achieve scalability is to use a cluster. Major
J2EE vendors implement such as BEA [6] or IBM [8] use
clustering to achieve scalability and high availability. We also
plan to evaluate those features, but they are still under
development in the open source containers we used for this
evaluation.

8. CONCLUSIONS
We have experimented with several implementations of the same
e-commerce application, using different application
implementation methods, container designs and communication
layers. The source code, container configurations, database
contents and experiment reports are all available for download
from our Web site at
http://www.cs.rice.edu/CS/Systems/DynaServer/.

We have shown that stateless session beans with bean-managed
persistence coupled with an efficient communication layer offer

performance comparable to Java Servlets. Entity beans impose a
row-level access to the database resulting in a finer grain access
and significantly lower performance.

Container design has no significant influence on SB BMP,
because communication costs dominate, but we have shown that it
has a direct impact on performance with entity beans. The
dynamic proxy approach has a large overhead that limits
scalability. Pre-compiled approaches reduce the use of reflection
at run time, thus providing better scalability.

Communication layers are the determining factor for the
scalability of the session façade implementation. Only the
container with pre-compiled classes combined with an optimized
communication layer offer scalable performance. Reflection cost
increases with the number of beans, quickly resulting in a
bottleneck.

9. ACKNOWLEDGMENTS
We are grateful for the people of the JBoss and JOnAS
communities for the useful help and information they provided us.

10. REFERENCES
[1] Rahim Adatia et al. – Professionnal EJB – Wrox Press, ISBN

1-861005-08-3, 2001.

[2] Subrahmanyam Allamaraju et al. – Professional Java Server
Programming J2EE Edition - Wrox Press, ISBN 1-861004-
65-6, 2000.

[3] Deepak Alur, John Crupi and Dan Malks – Core J2EE
Patterns – Sun Microsystem Press, ISBN 0-13-064884-1,
2001.

[4] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Alan
L. Cox, Sameh Elnikety, Romer Gil, Julie Marguerite,
Karthick Rajamani and Willy Zwaenepoel – Bottleneck
Characterization of Dynamic Web Server Benchmarks –
Technical Report TR02-388, Rice University, 2001.

[5] The Apache Software Foundation – http://www.apache.org/.

[6] BEA Systems, Inc – Achieving Scalability and High
Availability for E-Business – BEA white paper,
http://www.bea.com, 2001.

[7] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie
Marguerite and Willy Zwaenepoel – A Comparison of
Software Architecture for E-business Applications –
Technical Report TR02-389, Rice University, 2001.

[8] Willy Chiu – Design for Scalability – IBM white paper,
http://ibm.com/websphere/developer/zones/hvws, 2001.

[9] Distributed Systems Research Group, Charles University –
EJB Comparison Project – http://nenya.ms.mff.cuni.cz, 2000.

[10] Bruno Dumant, François Horn, Frédéric Dang Tran and Jean-
Bernard Stefani – Jonathan : an Open Distributed Processing
Environment in Java – Distributed Systems Engineering
Journal, vol. 6, 3-12, 1999.

[11] eBay – http://www.ebay.com/.
[12] Jakarta Tomcat servlet container –

http://jakarta.apache.org/tomcat/.

[13] JBoss EJB server – http://jboss.org.

[14] Vladimir Blagojevic and Rickard Oberg – Container
architecture - design notes – http://www.jboss.org/online-
manual/HTML/ch12.html.

[15] JOnAS: Java Open Application Server –
http://www.objectweb.org/jonas.

[16] MySQL Reference Manual v3.23.36 –
http://www.mysql.com/documentation/.

[17] Sun Microsystems – Dynamic Proxy Classes –
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html,
2001.

[18] Sun Microsystems – ECperf specification –
http://java.sun.com/j2ee/ecperf/, 2001.

[19] Sun Microsystems – EJB 2.0 specification –
http://java.sun.com/products/ejb/docs.html, 2001.

[20] Sysstat package – http://freshmeat.net/projects/sysstat/.

[21] Transaction Processing Performance Council –
http://www.tpc.org/.

[22] UrbanCode, Inc. – EJB Benchmark –
http://www.urbancode.com/projects/ejbbenchmark, 2001.

