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Section 1. Introduction

Should I take this tutorial?
This tutorial examines the validation of XML documents using either Document Type
Definitions (DTDs) or XML Schema. It is aimed at developers who have a need to control the
types and content of the data in their XML documents, and assumes that you are familiar
with the basic concepts of XML. (You can get a basic grounding in XML itself through the
Introduction to XML tutorial.) It also assumes a basic familiarity with XML Namespaces. (You
can pick up the basics of namespaces in the Understanding DOM tutorial.)

This tutorial demonstrates validation using Java from the command line, but the principles
and concepts of validation are the same for any programming environment, so Java
experience is not required to gain a thorough understanding. DTDs and XML Schema, in
particular, are language- and platform-independent.

What is XML validation?
In the creation of a database, using a data model in conjunction with integrity constraints can
ensure that the structure and content of the data meet the requirements. But how do you
enforce that kind of control using XML, when your data is just text in hand-editable files?
Fortunately, validating files and documents can make sure that data fits constraints. In this
tutorial, you'll learn what validation is, and you'll learn how to check a document against a
Document Type Definition (DTD) or an XML Schema document.

DTDs were originally defined in the XML 1.0 Recommendation and are a carryover from the
original Standard Generalized Markup Language (SGML), the precursor to HTML. Their
syntax is slightly different from XML, which is one drawback to using them. They also have
limitations in how they can be used, which led developers to seek an alternative in the form
of XML schemas. DTDs are still in use in a significant number of environments, however, so
an understanding of them is important.

There are a number of competing schema proposals, but the primary alternative to DTDs is
the XML Schema Recommendation maintained by the W3C. (Throughout the course of the
tutorial, "XML Schema" should be considered synonymous with "W3C XML Schema.") These
schema documents, which, in terms of syntax, are also XML documents, provide a more
familiar and more powerful environment in which to create the constraints on the data that
can exist in XML data.

Please note that validation is by no means a requirement when working with XML data. If the
overall structure and content of the XML data aren't crucial, feel free to bypass validation.

By the end of this tutorial you will learn how to create both a DTD and an XML Schema
document. You'll also learn the concepts of using them to validate an XML document.

Tools
This tutorial will help you understand the topic even if you read the examples rather than
trying them out. If you do want to try the examples as you go through this tutorial, make sure
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you have the following tools installed and working correctly:

* A text editor: XML files, DTDs, and XML Schema documents are simply text. To create
and read them, a text editor is all you need.

* JavaTM 2 SDK, Standard Edition version 1.3.1: XML can be manipulated and validated
in any language where a validating parser is available. The bulk of the tutorial deals with
the creation of documents, but you will also see how to build an application that uses a
validating parser. To execute these examples, you also need a Java environment such
as the JavaTM 2 SDK (available at http://java.sun.com/j2se/1.3/ , and a validating
parser).

* A validating parser: There are numerous validating parsers on the market. This tutorial
demonstrates two Java versions: Xerces 1.4.2, which supports XML Schema, and JAXP
1.1, Sun's reference implementation. Xerces can be downloaded from
http://xml.apache.org/xerces-j/index.html , and JAXP can be downloaded from
http://java.sun.com/xml/xml_jaxp.html .

If you have a different set of tools installed, you can use them instead. Just check the
documentation for instructions on turning on validation. You can download C++ and Perl
implementations of Xerces from the Apache Project at http://xml.apache.org .

Conventions used in this tutorial
There are a few conventions that are used in this tutorial to reinforce the material at hand:

* Text that needs to be typed is displayed in a bold monospace font. In some code
examples, bold is used to draw attention to a tag or element being referenced in the
accompanying text.

* Emphasis/Italics is used to draw attention to windows, dialog boxes, and feature names.
* A monospace font presents file and path names.
* Throughout this tutorial, code segments irrelevant to the discussion have been omitted

and replaced with ellipses (...)

About the author
Nicholas Chase has been involved in Web site development for companies including Lucent
Technologies, Sun Microsystems, Oracle Corporation, and the Tampa Bay Buccaneers. Nick
has been a high school physics teacher, a low-level radioactive waste facility manager, an
online science fiction magazine editor, a multimedia engineer, and an Oracle instructor. More
recently, he was the Chief Technology Officer of Site Dynamics Interactive Communications
in Clearwater, Florida. He is the author of three books on Web development, including Java
and XML From Scratch (Que). He loves to hear from readers and can be reached at
nicholas@nicholaschase.com .
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Section 2. Validation basics

What is validation?
XML files are designed to be easy for people to read and edit. They are also designed for
easy data exchange among different systems and different applications. Unfortunately, both
of these advantages can work against the need for data to be in a specific format. Validation
enables confirmation that XML data follows a specific predetermined structure so that an
application can receive it in a predictable way. This structure against which the data is
compared can be provided in a number of different ways, including Document Type
Definitions (DTDs) and XML schemas.

A document that has been checked against a DTD or schema in this way is considered a
"valid" document.

Valid versus well formed
Because valid has other meanings in the English language, it is sometimes confused with the
XML-specific term well formed.

A well-formed document conforms to the rules of XML. All elements have start and end tags,
all attributes are enclosed in quotes, all elements are nested correctly, and so on. A
document cannot be parsed unless it is well formed.

Just because a document can be parsed, however, does not mean that it is valid in the XML
sense. In order to be considered valid, a document must be parsed by a validating parser,
which compares it to a predetermined structure.

Valid documents are always well formed, but well-formed documents may not be valid.

Document Type Definitions (DTD)
The concept behind validation actually predates XML itself. When XML was first created it
was as an application of SGML. SGML allows different systems to talk to each other by
allowing authors to create a DTD. As long as the data followed the DTD, each system could
read it.

DTDs define elements that are allowed in a document, what they can contain, and the
attributes they can and/or must have.

Compare this simple document and its DTD:

The document:

<?xml version="1.0"?>
<!DOCTYPE memories SYSTEM "memory.dtd">
<memories>

<memory tapeid="23412">
<subdate>5/23/2001</subdate>
<donor>John Baker</donor>
<subject>Fishing off Pier 60</subject>
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</memory>
<memory tapeid="23692">

<subdate>8/01/2001</subdate>
<donor>Elizabeth Davison</donor>
<subject>Beach volleyball</subject>

</memory>
</memories>

The DTD:

<!ELEMENT memories (memory*)>

<!ELEMENT memory (subdate, donor, subject)>
<!ATTLIST memory tapeid CDATA #REQUIRED>

<!ELEMENT subdate (#PCDATA)>

<!ELEMENT donor (#PCDATA)>

<!ELEMENT subject (#PCDATA)>

The DTD uses a different syntax from XML, but it describes the various elements and
attributes and how they can be used. More information regarding the use and implementation
of DTDs is given later in this tutorial. For now, note that the DTD is tied to the XML document
via the DOCTYPE statement.

XML schemas
DTDs serve their purpose, but serious limitations exist.

For one thing, using XML itself to describe the structure would be much more convenient.
For another, there are limitations to what a DTD can specify. No provisions for data types
exist, and in some cases, restriction of the order of elements is impossible. These are just
some of the limitations developers confront in using DTDs.

XML schemas are one alternative that has been developed to fill some of these holes.
Consider the same XML document, this time with a schema document.

The document:

<?xml version="1.0"?>
<memories xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>
<memory tapeid="23412">

<subdate>5/23/2001</subdate>
<donor>John Baker</donor>
<subject>Fishing off Pier 60</subject>

</memory>
<memory tapeid="23692">

<subdate>8/01/2001</subdate>
<donor>Elizabeth Davison</donor>
<subject>Beach volleyball</subject>

</memory>
</memories>

XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
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<xsd:element name="memories">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="memory" type="memoryType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="memoryType">
<xsd:sequence>
<xsd:element name="subdate" type="xsd:date"/>
<xsd:element name="donor" type="xsd:string"/>
<xsd:element name="subject" type="xsd:string"/>

<xsd:attribute name="tapeid" type="idNumber" />
</xsd:complexType>
</xsd:schema>

Notice that in this case the syntax for the schema definitions themselves is different from the
syntax for DTDs. The syntax for the schema definitions is also the means for tying the
definitions into a schema document using XML Namespaces instead of the DOCTYPE.

The example document
The complete example XML file for validation in this tutorial consists of information that is
part of The Millennium Memory Project, which collects donated home movies and other
personal history recordings for posterity.

Each entry consists of a memory and the information about it, such as the donor, location,
and subject.

<?xml version="1.0"?>
<memories>

<memory tapeid="1">
<media mediaid="1" status="vhs" />
<subdate>2001-05-23</subdate>
<donor>John Baker</donor>
<subject>Fishing with the grandchildren on beautiful day.</subject>
<location><description>Pier 60</description></location>

</memory>
<memory tapeid="2">

<media mediaid="2" status="vhs"/>
<subdate>2001-05-18</subdate>
<donor>Elizabeth Davison</donor>
<subject>Beach volleyball</subject>
<location><place>Asbury Park, NJ</place></location>

</memory>
</memories>
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Section 3. Validating a document

How the validation process works
The documents used to describe the structure of a file are simply text files, so no
programming is necessary in order to understand them. This tutorial will look at how two
Java APIs make use of these files in the validation process. Other programming languages
and APIs use the same basic concepts.

A parser must interpret any XML document before an application can use it, typically to
create either a DOM document or a SAX stream. In either case, the parser looks at each
character of the document and decides whether it is an element, attribute, string of data, and
so on.

Validation occurs when the parser also checks the structure of the document against the
DTD or schema. However, the parser will only do this if it has been configured to do so. This
is normally done through a setting on the parser or the object that creates the parser.

During this time, if problems -- such as an improperly nested element or improperly added
attribute -- come up, they must be addressed. This is done through a class designated as
the error handler.

Create an error handler
An error handler generally extends the DefaultHandler helper class, which in turn
implements the ErrorHandler interface.

The error handler serves one and only one purpose: to deal with irregularities that come up
during the parsing of a document.

There are three types of situations:
* Warnings, which generally don't need further action
* Errors, which are actual problems
* Fatal errors (such as a document that is not well formed), which prevent processing

from continuing

Each of these situations needs to be dealt with via a method. In this example, the handler
simply returns information on the problems encountered, and, on a fatal error, exits.

Compile this class, and it is ready to be referenced by the parser.

import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.SAXParseException;

public class ErrorChecker extends DefaultHandler
{

public ErrorChecker() {
}

public void error (SAXParseException e) {
System.out.println("Parsing error: "+e.getMessage());

}
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public void warning (SAXParseException e) {
System.out.println("Parsing problem: "+e.getMessage());

}

public void fatalError (SAXParseException e) {
System.out.println("Parsing error: "+e.getMessage());
System.out.println("Cannot continue.");
System.exit(1);

}
}

Validation in JAXP
As discussed in the introduction of this tutorial, it is not necessary to code and run the
following examples to understand validation. Should you decide to do so, using JAXP to
parse (and ultimately validate) a document involves four steps (The next panel discusses
Validation in Xerces Java on page 9 ):

1. Create the DocumentBuilderFactory. Because the DocumentBuilder, which
actually parses the document, is an interface, it cannot be instantiated directly. Instead,
a DocumentBuilderFactory is created. This factory has certain properties, such as
isValidating(), that will determine the behavior of any parsers created with it. To
create a validating parser, use setValidating(true).

2. Create the DocumentBuilder. Use the DocumentBuilderFactory to create the
DocumentBuilder object, which parses the document.

3. Assign the ErrorHandler. It doesn't do any good for the parser to check for problems
if it doesn't know what to do with them. Use the setErrorHandler() method of the
DocumentBuilder to tell the parser to send errors to a new ErrorChecker object,
which was created in the previous panel, Create an error handler on page 7 .

4. Parse the document. If a document is not well formed, StructureTest will catch the
exception. If it is well formed but there are validation errors, the parser sends them to
the ErrorChecker object which reports them.

This is the basic principle behind validating a document: create a validating parser,
determine the destination for validation errors, and parse the document. The particulars are
slightly different for Validation in Xerces Java on page 9 .

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import java.io.File;
import org.w3c.dom.Document;

public class StructureTest {

public static void main (String args[]) {
File docFile = new File("memory.xml");

try {
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setValidating(true);

DocumentBuilder db = dbf.newDocumentBuilder();

ErrorChecker errors = new ErrorChecker();
db.setErrorHandler(errors);

Document doc = db.parse(docFile);

} catch (Exception e) {
System.out.print("Parsing problem.");

}
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}
}

Validation in Xerces Java
Using Xerces Java to validate a document involves the same basic principles as Validation in
JAXP on page 8 . Here the steps are:

1. Create the parser. Xerces allows the direct creation of the parser, unlike JAXP, which
requires using factories.

2. Turn on validation.
3. Set the error handler.
4. Parse the document.

import org.apache.xerces.parsers.DOMParser;
import java.io.File;
import org.w3c.dom.Document;

public class SchemaTest {
public static void main (String args[]) {

File docFile = new File("memory.xml");

try {

DOMParser parser = new DOMParser();
parser.setFeature("http://xml.org/sax/features/validation", true);

parser.setProperty(
"http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation",

"memory.xsd");

ErrorChecker errors = new ErrorChecker();
parser.setErrorHandler(errors);

parser.parse("memory.xml");

} catch (Exception e) {
System.out.print("Problem parsing the file.");

}
}

}

The application directly instantiates a DOMParser. Each parser created this way has a set of
features, one of which is validation. The parser's setFeature() method turns it on.

You can specify the location of the schema document within the XML (as seen in The XML
Schema instance document on page 16), or you can specify it within the application itself
using a property on the parser, as seen above.

Next assign an error handler. Notice that this is the same class that was used to handle
errors in JAXP. The events are the same, so there is no need to code a separate class.

Finally, parse the document. ErrorChecker reports any errors.

In this way, all documents are checked against a DTD or schema.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Validating XML Page 9



Section 4. Document Type Definitions (DTDs)

External DTDs
In order to validate a document, you must have a standard to validate it against. The oldest
and best-supported means for specifying requirements in an XML document is the DTD. A
DTD may be internal or external.

When it comes to DTDs, most people are more familiar with the external variety in which the
DOCTYPE declaration refers to a file containing the actual definitions.

There are several ways to designate the location of a DTD file. For example, an XHTML file
can designate a DTD that determines whether it is following the XHTML Strict, XHTML
Transitional, or XHTML Frameset Recommendations developed at the W3C. To designate
XHTML Transitional, the author might specify:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

The DOCTYPE declaration consists of several parts:

* <!DOCTYPE Indicates to the processor that this is a DOCTYPE declaration.
* html Indicates the name of the root element for the document. If the document started

with anything but <html> it would immediately be deemed invalid.
* PUBLIC A DOCTYPE can designate a publicly recognized DTD, potentially saving the

processor a trip to the server to retrieve it. The alternative, SYSTEM, is shown below. A
SYSTEM identifier indicates the URI where the DTD can be found.

* "-//W3C//DTD HTML 4.01 Transitional//EN": The actual public identifier for
the Transitional XHTML DTD.

For custom DTDs, developers typically use a SYSTEM identifier, such as:

<!DOCTYPE memories SYSTEM "http://www.nicholaschase.com/memories.dtd">

The parts match those for a PUBLIC identifier, except the declaration shows the location of
the DTD.

Typically, the DOCTYPE declaration also specifies the SYSTEM identifier when using a
PUBLIC identifier in case the processor doesn't recognize the latter:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
>

The external DTD file simply contains the definitions, starting with the Elements on page 11.
For an internal DTD, these definitions are part of the XML file itself.

Structure of an internal DTD
An external DTD can specify the contents of many different documents making them
somewhat easier to maintain. However, there are times when a valid document needs to
stand on its own. In this case, you need to include the DTD information within the document
itself.
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<?xml version="1.0"?>
<!DOCTYPE memories [

<!ELEMENT memories (memory+) >
<!ELEMENT memory (#PCDATA) >

]>
<memories>

<memory>TBD</memory>
<memory>TBD</memory>

</memories>

Ignoring the actual content for a moment, notice the structure of the internal DTD. The
DOCTYPE declaration still contains the information but rather than referring to a local or
remote file, the actual DTD is included between the brackets.

Elements
In both internal and external DTDs, elements are the foundation of an XML document, so
they are typically defined first.

An element definition consists of the ELEMENT keyword, the name of the element, and the
content it can contain. The content of an element may be text, other elements, or nothing at
all (in the case of empty elements).

<!DOCTYPE memories [
<ELEMENT memories (memory) >
<ELEMENT memory (subdate, donor, subject, media) >

<ELEMENT subdate (#PCDATA) >
<ELEMENT donor (#PCDATA) >
<ELEMENT subject (#PCDATA) >

<ELEMENT media EMPTY >
]>

Designate an element that can contain text with the #PCDATA keyword. This is short for
parsed character data; it refers to any text within an element and cannot include markup.
Examples are the subdate, donor, and subject elements.

The memory and memories elements show the syntax used to specify elements that contain
only other elements as content.

An element can also be defined as EMPTY, as in the media element. Empty elements
typically carry all information in attributes. For example:

<media type="vhs" />

Variable element content
Sometimes an author wants to allow different choices for the content of an element. For
example, the data structure contains an element named location that may contain either a
place element or a description element. This is written as follows, with a pipe character
(|) separating the choices.

<!ELEMENT location (place | description) >
<!ELEMENT place (#PCDATA) >
<!ELEMENT description (#PCDATA) >
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Modifiers (*, + and ?)
The DTD that has been created up to this point is very specific. Each element must occur
exactly one time, in exactly the same order. The only exception to this is the location,
where either the place or description must occur, but not both.

Modifiers offer more flexibility in design. They are:

* * : An element designated with the * modifier may appear 0 or more times.
* + : An element designated with the + modifier must appear 1 or more times.
* ? : An element designated with the ? modifier must appear 0 or 1 time.

The code below shows the DTD modified so the number of memory elements is unrestricted.
It also shows that there must be at least one subject, but there can be more than one.
Finally, the donor name is not required, but can appear only once if it is present. All
unmodified elements must appear once and only once.

<!DOCTYPE memories [
<!ELEMENT memories (memory)* >
<!ELEMENT memory (media,

subdate,
donor?,
subject+,
location) >

<!ELEMENT subdate (#PCDATA) >
<!ELEMENT donor (#PCDATA) >
<!ELEMENT subject (#PCDATA) >
<!ELEMENT location (place |

description) >
<!ELEMENT description (#PCDATA) >
<!ELEMENT place (#PCDATA) >
<!ELEMENT media EMPTY >

]>

Note that these restrictions are per element. The donor can only appear once within a
memory element, but can appear in every instance of memory.

Ordering child elements
XML is primarily a hierarchical system, consisting of elements within elements within other
elements. These relationships are known as parent-child relationships. For example, the
media element is contained within the memory element, so the memory element is
considered the parent of the media element. Conversely, the media element is the child of
the memory element. One parent, such as memory, may have multiple children.

The order of child elements can also be determined by looking at a DTD. Paradoxically, while
child elements must always appear in the order in which they appear in the DTD, the DTD
can be written in such a way that the children can appear in any order.

Strictly speaking, the required order doesn't change, but the options do. For example, the
current DTD specifies that the location element can have either a place or a
description.

<!ELEMENT location (place|description) >
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If this choice could be repeated, as in:

<!ELEMENT location (place|description)* >

then the location could contain a place and a description, in any order. The same
thought could be applied to the memory element:

<!ELEMENT memory (media | subdate | donor?| subject+| location)* >

In this case, the elements can appear in any order because the DTD allows unlimited
choices. First a subdate could be chosen, then a location, then a donor, and so on.
Notice, however, that once this technique is employed, certain previous restrictions become
useless. Because choices can be made more than once, any of the specified elements can
be chosen any number of times, or not at all.

This is a serious limitation of DTDs. It is overcome through the use of XML schemas, which
allow much greater control. Schemas are also useful when defining mixed content.

Mixed content
A mixed content element contains both text and other elements. One good example of this is
text containing HTML markup. Consider the following potential subject:

<subject>
A reading of Charles Dickens' <i>A Christmas Carol</i>. Absolutely marvelous!

</subject>

This is known as mixed content because it has both character data and an element
>). In order to make this acceptable to a validating parser, the i element must be defined
and the subject element must be allowed to take any number of either #PCDATA or i
choices. To allow common markup, the DTD needs to read:

<!ELEMENT i (#PCDATA) >
<!ELEMENT b (#PCDATA) >
<!ELEMENT h1 (#PCDATA) >
<!ELEMENT br EMPTY >
<!ELEMENT p (#PCDATA) >
<!ELEMENT subject (#PCDATA|i|b|h1|br|p)* >

Note that while this does solve the problem, there is no way to constrain the order. This, too,
is a problem solved by XML Schema.

Define attributes
While it is possible to create an XML structure with nothing but elements, the more common
situation is elements with attributes. Attributes must also be defined if they are to appear on
elements in a validated document.

There are several ways to define an attribute. The first is to simply designate it as character
data, or CDATA:

<!ATTLIST memory tapeid CDATA #REQUIRED >

In this case, the DTD assigns the attribute tapeid to the memory element. The tapeid
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attribute consists of character data, and is required. An element can also be designated as
#IMPLIED or #FIXED, in which case a default value must also be specified.

Some attributes are enumerated, meaning that a value must be chosen from a
predetermined list. For example:

<!ATTLIST media type (8mm | vhsc | vhs | audio) '8mm' #IMPLIED >

In this case, the document must choose a value from the list. If no value is provided, the
parser will use the default value of 8mm. This is the case in any document for which a DTD is
present, even if the parser is not validating.

Multiple attributes can be designated with a single ATTLIST definition:

<!ATTLIST media type (8mm | vhsc | vhs | audio) '8mm' #IMPLIED
length CDATA >

A second means for defining attribute content involves IDs and IDREFs.

IDs and IDREFs
It is sometimes necessary to "link" data together with the use of an identifier, much the way
primary and foreign keys work in a relational database. For example, it might be a
requirement that the memory identifier matches up with the media identifier, so that a
memory can be located. ID and IDREF datatypes allow you to enforce such data integrity:

<!ATTLIST media mediaid ID #REQUIRED >
<!ATTLIST memory tapeid IDREF #REQUIRED >

These notations add two restrictions to the file. First, the value of each mediaid must be
unique, and second, the value of each tapeid must match an existing mediaid.

Each element can have a maximum of one ID attribute, but there is no way to force an
IDREF to reference a particular ID.

The complete DTD and document
The DTD:

<!ELEMENT memories (memory)* >
<!ELEMENT memory (media | subdate | donor?| subject+| location)* >
<!ATTLIST memory tapeid IDREF #REQUIRED >
<!ELEMENT subdate (#PCDATA) >
<!ELEMENT donor (#PCDATA) >
<!ELEMENT subject (#PCDATA) >
<!ELEMENT location (place|description) >
<!ELEMENT description (#PCDATA) >
<!ELEMENT place (#PCDATA) >
<!ELEMENT media EMPTY >
<!ATTLIST media mediaid ID #REQUIRED >

The document:

<?xml version="1.0"?>
<!DOCTYPE memories SYSTEM "memory.dtd">
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<memories>
<memory tapeid="1">

<media mediaid="1" status="vhs" />
<subdate>2001-05-23</subdate>
<donor>John Baker</donor>
<subject>Fishing off Pier 60</subject>
<location><description>Outside in the woods</description></location>

</memory>
<memory tapeid="2">

<media mediaid="2" status="vhs"/>
<subdate>2001-05-18</subdate>
<donor>Elizabeth Davison</donor>
<subject>Beach volleyball</subject>
<location><place>Clearwater beach</place></location>

</memory>
</memories>

DTD limitations
DTDs are extremely limited when it comes to the actual types of data they can include. For
example, there is no way to constrain data to be numeric, or dates. Attributes can be
constrained as unique IDs, but there is no way to determine what their datatype should be.
(And oddly, an ID can't be a number, contrary to common practice in relational databases!)

There are also limitations on Ordering child elements on page 12 . In addition, there cannot
be more than one element with a particular name, so there is no way to create a different
definition for an element that might appear in more than one context (such as the children of
two different parents).

All of these difficulties are resolved with the use of XML Schema.
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Section 5. XML Schema

The XML Schema instance document
In contrast to DTDs, schema documents are built in XML itself. Validation using schemas
requires two documents: the schema document, and the instance document.

The schema document is the document containing the structure, and the instance document
is the document containing the actual XML data. An application determines the schema for
an instance document in one of two ways:

1. From the document itself: While documents use the DOCTYPE declaration to point to
an external DTD, they use attributes and namespaces to point to an external schema
document:

<?xml version="1.0"?>
<memories xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='memory.xsd'>
<memory tapeid="idnum">

...

First create the namespace itself, then use the noNamespaceSchemaLocation
attribute to determine the location. Schemas can also be created for a particular target
namespace. In that case, specify the targetNamespace in the schema document
itself.

2. Through properties set within the application: With Xerces, set the
http://apache.org/xml/properties/schema/external-schemaLocation
and the
http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation
properties to determine the location of the schema document, as seen in Validation in
Xerces Java on page 9 .

Structure of a schema document
A schema document is simply an XML document with predefined elements and attributes
describing the structure of another XML document.

Consider this sample schema document:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="memories">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="memory" maxOccurs="unbounded" type="memoryType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="memoryType">
<xsd:sequence>

<xsd:element name="media">
<xsd:complexType>

<xsd:attribute name="mediaid" type="xsd:string" />
<xsd:attribute name="status" type="xsd:string" />

</xsd:complexType>
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</xsd:element>
<xsd:element name="subdate" type="xsd:string"/>
<xsd:element name="donor" type="xsd:string"/>
<xsd:element name="subject" type="xsd:string"/>
<xsd:element name="location" type="locationType" />

</xsd:sequence>
<xsd:attribute name="tapeid" type="xsd:string" />
<xsd:attribute name="status" type="xsd:string" />

</xsd:complexType>

<xsd:complexType name="locationType">
<xsd:choice>

<xsd:element name="description" type="xsd:string" />
<xsd:element name="place" type="xsd:string" />

</xsd:choice>
</xsd:complexType>
</xsd:schema>

This document, the XML Schema equivalent of the DTD built earlier in the tutorial, shows
some of the structures used to define the content of an XML document. The development of
a schema starts with the definition of elements.

Elements and built-in types
All XML documents are built on elements. Defining an element in a schema document is a
matter of naming it and assigning it a type. This type designation can reference a custom
type, or one of the built-in types listed in the XML Schema Recommendation. This example
shows built-in types:

<xsd:element name="subdate" type="xsd:date"/>
<xsd:element name="donor" type="xsd:string"/>
<xsd:element name="subject" type="xsd:string"/>
<xsd:element name="description" type="xsd:string" />
<xsd:element name="place" type="xsd:string" />

These are simple elements that contain only text. The subdate element has been further
constrained, however, to dates, in the format of yyyy-mm-dd, as defined in the W3C XML
Schema Recommendation.

Forty two simple types are defined as part of the recommendation, including string, int,
date, decimal, boolean, timeDuration, and uriReference.

You can also create new types.

Simple types: restricting values
In addition to the built-in simple types, a schema can designate the creation of new simple
types. These types can range from text in particular formats, such as a phone number or
product number, to a numeric range, to an enumerated list.

The example project needs two new simple types. The first is the idNumber:

<xsd:simpleType name="idNumber">
<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="1" />
<xsd:maxInclusive value="100000" />

</xsd:restriction>
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</xsd:simpleType>

This type, used for the tapeid attribute, simply limits the values to an integer between 1 and
100000.

Simple types: enumeration
You can use another type of derivation by restriction to create an enumerated list, such as
this one to limit the values for the media type:

<xsd:simpleType name="mediaType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="8mm" />
<xsd:enumeration value="vhs" />
<xsd:enumeration value="vhsc" />
<xsd:enumeration value="digital" />
<xsd:enumeration value="audio" />

</xsd:restriction>
</xsd:simpleType>

You can use derived simple types in the same way as the built-in types.

Complex types: attributes
One of the restrictions of a simple type is that these elements cannot contain attributes. In
order to add attributes to an element, you must convert it to a complexType.

One way to do this is through the use of anonymous . This involves adding a complexType
element as a child to the element element.

<xsd:element name="media">
<xsd:complexType>

<xsd:attribute name="mediaid" type="xsd:integer" />
<xsd:attribute name="status" type="mediaType" />

</xsd:complexType>
</xsd:element>

In this case, the media element now has two attributes, including one that follows the
enumerated mediaType.

You can also create and name complex types.

Complex types: elements
Adding children to an element also requires the use of complex types. To simply list one or
more child elements, use the sequence element:

<xsd:element name="memories">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="memory" type="memoryType"/>

</xsd:sequence>
</xsd:complexType>
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</xsd:element>

This example shows only one child element, but you still need the sequence element. The
type memoryType combines many of the techniques seen so far:

<xsd:complexType name="memoryType">
<xsd:sequence>

<xsd:element name="media">
<xsd:complexType>

<xsd:attribute name="mediaid" type="xsd:integer" />
<xsd:attribute name="status" type="mediaType" />

</xsd:complexType>
</xsd:element>
<xsd:element name="subdate" type="xsd:date"/>
<xsd:element name="donor" type="xsd:string"/>
<xsd:element name="subject" type="xsd:string"/>
<xsd:element name="location" type="locationType" />

</xsd:sequence>
<xsd:attribute name="tapeid" type="idNumber" />
<xsd:attribute name="status" type="xsd:string" />

</xsd:complexType>

The memoryType type also includes a reference to the locationType, which allows the
user to choose between potential children for an element.

Element choices
The sequence element shows all of the possible children of an element. In some cases,
however, you want to choose only one element from a list of alternatives. For that, you need
the choice element:

<xsd:complexType name="locationType">
<xsd:choice>

<xsd:element name="description" type="xsd:string" />
<xsd:element name="place" type="xsd:string" />

</xsd:choice>
</xsd:complexType>

Either the description or the place element may appear as a child of any element of
locationType, but not both. Use this technique to define a choice of attributes as well as
elements.

Optional and repeated elements
At this point all elements and attributes added to the schema must appear exactly once. This
is obviously unacceptable in most cases. Using minOccurs and maxOccurs, you can
control whether or not an item must appear, and whether or not it may repeat. In this
example, the schema requires a subject, and allows it to appear as many as five times
within a single element:

...
<xsd:element name="subject" minOccurs="1" maxOccurs="5" type="xsd:string"/>
...

Sometimes you don't want an upper limit. For example, the memory element may be
specified as optional, but if present, it may appear an unlimited number of times in the
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memories element:

<xsd:element name="memories">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="memory"

minOccurs="0" maxOccurs="unbounded"
type="memoryType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

This capability also comes in handy when dealing with Mixed content on page 20.

Mixed content
There are times when an element contains mixed content, as opposed to just elements, or
just text. For example, the subject element might contain HTML markup:

<subject>
This lab specializes in studying drosophila, the common fruit fly.
They also bred the genetic variation ether-a-go-go.

</subject>

This content couldn't be described as xsd:string because it contains elements. Similarly,
just listing the i and b elements in a sequence wouldn't do because they contain text.
Instead, the subject element must be defined as mixed:

<xsd:element name="subject">
<xsd:complexType mixed="true">

<xsd:sequence>
<xsd:element name="i" minOccurs="0" maxOccurs="unbounded" type="xsd:string" />
<xsd:element name="b" minOccurs="0" maxOccurs="unbounded" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Note that including HTML is not the only time that mixed content comes into play. Often
system will contain narrative or other data that includes items such as names, addresses,
acronyms, or terms, that are set off as elements so they can be found or styled appropriately.

This method of creating mixed content is an improvement over DTDs because it allows better
control over the number and order of elements. Of course, there will be times when you don't
want that either.

Unconstrained order
Occasionally the general content of an element needs to be constrained, but not the order in
which it appears. This is particularly true for Mixed content on page 20 . To create an
element that does not constrain the order of its children, use the all element instead of
sequence.

<xsd:element name="subject">
<xsd:complexType mixed="true">

<xsd:all>
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<xsd:element name="i" minOccurs="0" maxOccurs="1" type="xsd:string" />
<xsd:element name="b" minOccurs="0" maxOccurs="1" type="xsd:string" />

</xsd:all>
</xsd:complexType>

</xsd:element>

Notice that maxOccurs has been set to 1, rather than unbounded. This is a requirement for
using the all element. The minOccurs and maxOccurs attributes must be either 0 or 1.
Combining and nesting these groups can create an element where the types of elements, but
not their order or frequency, is constrained.

Schema documents also support completely unconstrained elements.

Completely unconstrained elements
The ultimate in an unconstrained element would be one for which any content whatsoever is
permitted. You can achieve this via the built-in anyType type. For example, you can define
the location element to contain any content, in any order, with any frequency. This
includes not only text, but also elements:

<xsd:element name="description" type="xsd:anyType" />

Combining all of these techniques leads to the complete document.

The complete schema and instance documents
The XML Schema document:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="memories">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="memory" minOccurs = "0" maxOccurs="unbounded" type="memoryType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="memoryType">
<xsd:sequence>

<xsd:element name="media">
<xsd:complexType>

<xsd:attribute name="mediaid" type="xsd:integer" />
<xsd:attribute name="status" type="mediaType" />

</xsd:complexType>
</xsd:element>
<xsd:element name="subdate" type="xsd:date"/>
<xsd:element name="donor" type="xsd:string"/>
<xsd:element name="subject">

<xsd:complexType mixed="true">
<xsd:all>

<xsd:element name="i" minOccurs="0" maxOccurs="1" type="xsd:string" />
<xsd:element name="b" minOccurs="0" maxOccurs="1" type="xsd:string" />

</xsd:all>
</xsd:complexType>

</xsd:element>
<xsd:element name="location" type="locationType" />

</xsd:sequence>
<xsd:attribute name="tapeid" type="idNumber" />
<xsd:attribute name="status" type="xsd:string" />
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</xsd:complexType>

<xsd:complexType name="locationType">
<xsd:choice>

<xsd:element name="description" type="xsd:anyType" />
<xsd:element name="place" type="xsd:string" />

</xsd:choice>
</xsd:complexType>

<xsd:simpleType name="idNumber">
<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="1" />
<xsd:maxInclusive value="100000" />

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="mediaType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="8mm" />
<xsd:enumeration value="vhs" />
<xsd:enumeration value="vhsc" />
<xsd:enumeration value="digital" />
<xsd:enumeration value="audio" />

</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

The instance document:

<?xml version="1.0"?>
<memories xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='memory.xsd'>
<memory tapeid="1">

<media mediaid="1" status="vhs" />
<subdate>2001-05-23</subdate>
<donor>John Baker</donor>
<subject>Fishing off Pier 60</subject>
<location>

<description>Outside in the woods</description>
</location>

</memory>
<memory tapeid="2">

<media mediaid="2" status="vhs"/>
<subdate>2001-05-18</subdate>
<donor>Elizabeth Davison</donor>
<subject>Beach volleyball</subject>
<location>

<place>Clearwater beach</place>
</location>

</memory>
</memories>
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Section 6. Validation summary

Summary
This tutorial showed you how to create both DTD and XML Schema documents to validate
your XML documents against. The strengths of schemas over DTDs were discussed.

The tutorial also discussed validation from the perspective of two different Java APIs (JAXP
and Xerces), but remember that XML is a platform-independent means for representing
information. Validating parsers are available in C++, Perl, and other languages, and the
concepts are the same.

Resources
There is a lot of good information on validating XML documents on the Web.

* For a basic grounding in XML read through the Introduction to XML tutorial.
* Read the W3C's original XML 1.0 Recommendation to see the definition of Document

Type Definitions (DTDs).
* Read the XML Schema Recommendation at the W3C site. It also includes an XML

Schema Primer explaining the different options available to you.
* Read Kevin Williams' discussion of Why XML Schema beats DTDs hands-down for

data .
* Visit XML.org's registry of over 500 industry standard DTDs .
* Visit XML.org's registry of industry standard schemas .
* Order XML and Java from Scratch , by Nicholas Chase, the author of this tutorial.
* Download IBM's Schema Quality Checker from alphaWorks (free download with 90-day

license, renewable). It evaluates your schema documents for errors.
* Download the Java 2 SDK , Standard Edition version 1.3.1.
* Download JAXP 1.1 , the JavaTM APIs for XML Processing.
* Download the the Xerces parser for Java from the Apache XML project.
* Download the the Xerces parser for C++ from the Apache XML project.
* Download the the Xerces parser for Perl from the Apache XML project.

Feedback
Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.
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