Svs
ofra

s s 1D

l S!s
ogra
UNIX Systems Programming | S SN.\LX
ogra

Short Course Notes

Alan Dix © 1996

Lk X

http://www.hcibook.com/alan/

http://www.hcibook.com/alan/

1 Course
ogra Outline

Alan Dix

http://www.hcibook.com/alan/

Session 1 UNIX basics the UNIX AP, system calls
and manuals

Session 2 file I/O and filters standard input and output, read,
write and open

Session 3 makefiles and make, argc & argv and

arguments environment variables

Session 4 tile manipulation creating and deleting files and
directories, links and symbolic
links

Session 5 terminal I/O similarities to file I/O, tty drivers,

stty & gtty, termcap and curses

Session 6 signals and time catching signals and problems
that arise, delays and finding the
time

Session 7 mixing C and Scripts shell scripts, getting information
between C and shell, putting

them together

@M%{ Short Course Notes Alan Dix ©19%96 1/i

http://www.hcibook.com/alan/

Laeb | K Reading

¢ The Unix V Environment,
Stephen R. Bourne,
Wiley, 1987, ISBN 0 201 18484 2

The author of the Borne Shell! A 'classic' which deals with system
calls, the shell and other aspects of UNIX.

* Unix For Programmers and Users,
Graham Glass,
Prentice-Hall, 1993, ISBN 0 13 061771 7

Slightly more recent book also covering shell and C programming.

X

BEWARE - UNIX systems differ in details,
check on-line documentation

e UNIX manual pages:
man creat efc.

Most of the system calls and functions are in section 2 and 3 of the
manual. The pages are useful once you get used to reading them!

e The include files themselves
fusrincludeftime.h efc.

Takes even more getting used to, but the ultimate reference to
structures and definitions on your system.

@M%{ Short Course Notes Alan Dix ©1996 1/ii

LSJSNJ“?K Session 1
ogra UNIX basics

e the nature of UNIX

e the UNIX API

e system calls and library calls
e system call conventions

e how they work

e UNIX manuals and other info

S
MMX Short Course Notes Alan Dix © 1996 I/1

UNIX

UNIX is an operating system

file store networks etc. programs

It manages:

e files and data
® running programs

e networks and other resources

It is defined by

e its behaviour (on files etc.)
e its application programmers interface — API

lskytmlnzi Short Course Notes Alan Dix © 1996

I/2

UNIX API — the system calls

e ultimately everything works through system calls

user 3
[applications} X

[dnmnons \ / shell j

API
UNIX

file store networks etc. programs

e

lskytmlnzi Short Course Notes Alan Dix © 1996 1/3

first system call — exit

void exit(int Staius)

* program ends!
e its exit code is set to status

e available to shell:

$? — Bourne shell
$status — Cshell

e actually not a real system call!

0 does some tidying up
0 real system call is _exit

* example:

0 does some tidying up
0 program testextc

?la'no
} extd),

0 run it

$ cc-otestexittestextc
$ testext

$ echo$?

3

$

lskytmlnzi Short Course Notes Alan Dix © 1996 1/4

system calls and library calls

e system calls

0 executed by the operating system
0 perform simple single operations

e library calls
0 executed in the user program
0 may perform several tasks
0 may call system calls

e distinction blurs

0 often a thin layer
0 compatability with older UNIX calls (e.g. pipe)

e kinds of library:

0 UNIX functions — layers and O/S utilities

0 stdio & ANSI C libraries
— platform independent functions

0 other libraries
— for specialist purposes (e.g. NAG)

lskytmlnzi Short Course Notes Alan Dix © 1996 1/5

system call conventions

e library functions often return pointers
FILE *fp =fopen(‘hany",'r");
0 NULLreturn for failure

e system calls usually return an integer
intres=sys _cal(some_args)

e return value
] res>=0 — OK
0 res<O — failure

* opposite way round!

[1 cannot use as Boolean:
if(sys_cal(some_args)){... [l wrong

e see the global variable errno for more info
* many system calls take simple arguments

* but some take special structures

lskytmlnzi Short Course Notes Alan Dix © 1996 I/6

how they work

[0 program gets to the system call in the user’s code
intres=sys _cal(some_parameters)

[0 puts the parameters on the stack

[performs a system ‘trap’ — hardware dependent

0 0O now in system mode U [

[] operating system code may copy large data
structures into system memory

L] starts operation
if the operation cannot be completed immediately
UNIX may run other processes at this point

[0 operation complete!
[0 if necessary copies result data structures back to
user program’s memory

[1 [O return touser mode [[]

[J user program puts return code into res
[J program recommences

® UNIX tries to make it as cheap and fast as possible

® but system calls are still “expensive’
(compared to ordinary functions)

lskytmlnzi Short Course Notes Alan Dix © 1996 1/7

finding out

e don’t expect to remember everything
I don’t!

e even if you did versions differ

e places to look:

0 manuals

— paper or using mancommand

— may need to give man the section:
e.g. man2stat

0 apopos
— especially to find the right manpage
e.g. apropos directory
O look at the source!
— read the include file

— find the right include file:
forep direntusrinduderh
forep dirent Austincudelsys#h

S
uﬁﬂ%{ Short Course Notes Alan Dix © 1996 1/8

UNIX manuals

e divided into sections

1 - shell commands
e.g. mv, s, cat

2 - system calls
e.g. _exit, read, write

3 — library calls (including stdio)
e.g. exit, printf

4 - device and network specific info
e.g. mv, s, cat

5 — file formats
e.g. passwd, termcap

6 — gamesand demos
e.g. fortune, worms

7 — miscellaneous
e.g. troff macros, ascii character map

8 — admin functions
e.g. fsck, network daemons

e UNIX manual reading
a bit of an art

lskytmlnzi Short Course Notes Alan Dix © 1996 1/9

CEEMLA

Session 2
file I/O and filters

standard input and output
filters

using read and write
opening and closing files
low-level 1/0 vs. stdio
mixing them

using it

Short Course Notes AlanDix ©199%6 1/10

Input and output

each running program has numbered input/outputs:

0 - standard input
e often used as input if no file is given
e default input from the user terminal

1 - standard output
e simple program's output goes here
e default output to the user terminal

2 — standard error
* error messages from user
e default output to the user terminal

these numbers are called file descriptors

e used by system calls to refer to files

input output
P Slo B
2

i

errors

lskytmlnzi Short Course Notes Alan Dix © 1996

I/11

redirecting from the shell

default input/output is user's terminal

redirection to or from files:

0 command <fred
— standard input from file 'fred

fred tput
—> 0 1&

2

:

errors

0 command >hany
— standard output goes to file 'harry

input 'ha“y '
p—) —

:

errors

— file is created if it doesn't exist
N.B. C shell prevents overwriting

0 command == hany
— similar, but appends to end of 'harry

lskytmlnzi Short Course Notes AlanDix ©1996 1/12

redirection of standard error

0 command 2>emog
— standard error goes to file 'eMog

input output
>0 >

:

'enog

o command 2> enlog
— standard error appends to end of 'emog

0 command 2>&1

— standard error goes to current
destination of standard output

input output
—>>10 j
2

errors

lskytmlnzi Short Course Notes AlanDix ©1996 1/13

filters

e some commands only work on named
files:

e.g. copying — @0 fomietoie

* many take standard input as default
cat, head, tall, cut, paste, etc.

e these are called filters
— very useful as part of pipes

e also very easy to program!

[0 don’t have to worry about
0 command line arguments
0 opening or closing files

* just read-process-write

lskytmlnzi Short Course Notes AlanDix ©1996 1/14

read & write

ret = read(fd,bufflen)
int d — afile descriptor (int), open for reading
char*ouff — buffer in which to put chars
int len — maximum number of bytes to read
int ret — returns actual number read

e ret isO atend of file, negative for error

 puf isnot NULL terminated
leave room if you need to add “\0’!

ret = write(fdloufflen)
int d — afile descriptor (int), open for writing
char *buff — buffer from which to get chars
int len — number of bytes to write
int ret — returns actual number written

* ret isnegative for error, 0 means “end of file”
ret may be less than len e.g. if OS buffers full
* should really check and repeat until all gone

e pbuf need notbe NULL terminated
if buff is a Cstring, use strlen to get its length

*

N.B. Both may return negative after interrupt (signal)

lskytmlnzi Short Course Notes AlanDix ©1996 1/15

example — file translation

e aMacintosh — UNIX text file conversion program

main(){

char bufi256];

foG){
Inti
intn =read(0,buf,256);
if (n<=0) exit(-n);
for (FO; i<n; H+)

if (buffi] =%
bufff] =’

write(1,buf,n);

I
ext(Q);

O O O

[] read from file descriptor 0 — standard input
buffer size is 256 bytes
number of bytes read goes into n

[] end of file (0) or error (n<0) both exit
the -n means that end of file gives a zero exit code

[1 Macintosh uses carriage return '\ to end lines
UNIX uses newline \n'

[1 writing to 1 — standard output
remember only write n bytes not 256!

lskytmlnzi Short Course Notes AlanDix ©1996 1/16

opening and closing files

#include <fcrtln>
intfd = open(name,flags)
charname — name of the file to open
int flags — read/write/append etc.
int fd — returns a file descriptor

* insimple use flags is one of:

O RDONLY - read only 0)
O WRONLY - write only (1)
O RDWR — read and write (2)

but can ‘or’ in other options

* negative result on failure
0 file doesn’t exist
0 do not have permissions

* closing files is simpler!

intres = close(fd)

int fd — an open file descriptor
int ret — returns: 0 oK
1 failed

lskytmlnzi Short Course Notes AlanDix ©1996 1/17

low-level /O vs. stdio

e why use low-level I/O?
0 less layers = more efficient
0 more control — e.g. random access
0 sometimes have to — e.g. networks

e can you mix low-level 1/0 and stdio?
L yes
[0 with care!

e different files/devices
[] no problem

e same file
[1 stdio is buffered

O output:

there helloworld

lskytmlnzi Short Course Notes AlanDix ©1996 1/18

0 O 0O 0O HandsonoO O 0O O

[1 write a simple cypher filter: cypherc

L1 the filter should copy standard input to standard
output adding 1 to each byte:

a—>b,b—>C,C—>d,d—>e, etc.

[1 it will be similar to the Mac — UNIX translator
except that the loop should add 1 rather than
replace carriage returns with line feeds

[] to make a better cypher, you could add a different
number or have a 256 byte array to act as the cypher

[1 compile either with “cc’ - the old K&R C compiler:
cc-0 cyphercypher.c

[1 or with ‘acc’ — the ANSI C compiler:
cc-0cyphercypher.c

lskytmlnzi Short Course Notes AlanDix ©1996 1/19

LSJSNJ ?ﬁ Session 3
ogra makefiles and

arguments

e make
e argv and argc
e environment variables

[l using it

@Ml Short Course Notes AlanDix ©1996 1/20

make

‘make’ is a UNIXt command which:

e automates program construction and linking
e tracks dependencies

e keeps things up-to-date after changes

to use it:

0 construct a file with rules in it
you can call it anything, but ‘makefile * is the default

0 run ‘make’ itself

make target
— (uses the default makefile)

make fmyfie target
— (uses the rule file myfile)
either rebuilds the program ‘target "’ if necessary

e each makefile consists of:
0 definitions
0 rules

e rules say how one thing depends on another
they are either:

0 specific — eg tomake mail-client do this ...
H generic — e.g. tomakeany ‘.0 ’ fromits ".C" ...

+ make is also available in many other programming environments

lskytmlnzi Short Course Notes AlanDix ©1996 1/21

makefile format

Definitions

* general form:
variable = value

* example:
SDIR = tp
MYLIBS = {(SDIR)b

N.B. one variable used in another's definition

* make variables are referred to later using $
eg HSDIR), §MYLIBS)
e expanded like #defines or shell variables

(some versions of make will expand shell variables also)

Rules (just specific rules)

* general form:

target . dependentl dependent? ...
command-line

T NB. this must be a tab

e example:

Myprog: Myprog.0 ancther.o
CC-0 myprog myprog.o another.o §MYLIBS)

this says:
to make myprog you need myprog.o and another.o

if either of them is newer than myprog rebuild it using the
then rebuild it using the command: “cc -0 myprog ”

lskytmlnzi Short Course Notes AlanDix ©1996 1/22

argc & argv

int main(int argc, char *argv)
or: int main(int argc, char *argV 1)

e one of the ways to get information into a C program

* in UNIX you type:

myproga'bc'd
the program gets:
anc = 4 — length of agv
aogM0] = "myprog’ — program name
agfl] = @
agf2l = 'bc — single second argument
agf =
agvd] = NULL — terminator

N.B. 0 DOQOS isidentical (exceptargv[0] is NULLearly versions)
0 agc is one less than the number of arguments!

e other ways to get information in (UNIX & DOS):

0 configuration file (known name)
0 standard input
0 environment variables using getenv()
or (UNIX only) third arg to main:
main(ntargc, char *argyv, char*envp)

lskytmlnzi Short Course Notes AlanDix ©1996 1/23

environment variables

e setof Nname=value mappings

e most created during start-up (.profile, .login etc.)

setting a variable from the shell:
myvar =helo
var2 ="avalue with spaces needs to be quoted”
export myvar
* no spaces before or after '="sign

* variables need to be exported to be seen
by other programs run from the shell

e inCshell: "setname=val " and no export

listing all variables from the shell:

$set

HOME=/home/staff2/alan
myvar=hello
PATH=/local/bin:/bin:/local/X/bin
USER=alan

g

lskytmlnzi Short Course Notes AlanDix ©1996 1/24

environment variables — 2

e accessing from a program — 3 methods

[J extra argument to main
main(int argc,char *argv,char *envp)

[0 global variable
extemn char *environ

[0 system function
char*value = getenv(name);

e Dboth 00 and O give you a structure similar to agv
0 anull terminated array of strings

0 but environment strings are of the form
name=value

o thegetenv function O rather different
0 fetches the value associated with name
0 returns NULLif name not defined

e alsoa putenv function
0 only available to this process and its children
0 not visible to the shell that invoked it

lskytmlnzi Short Course Notes AlanDix ©1996 1/25

0 O 0O 0O HandsonoO O 0O O

[] write a program to produce a list of arguments as in
the 'argc & argv' slide

[the core of your program will look something like:

for(=0; i<arge; H+)
porintf("argv{%od] = Yes\n” argvii);

1 if you use ‘cc’ then the ‘main’ program begins:

mainarge.argy)
Nt argc,
char*argy,

the slide shows the ANSI C declaration

[1 do asimilar program for environment variables

lskytmlnzi Short Course Notes AlanDix ©1996 1/26

LSJSNJ.X Session 4
ogra file manipulation

e creating new files

e ‘deleting’ files

e linking to existing files
e symbolic links

e renaming files

e creating/removing directories

[l using it

@MX \Short Course Notes AlanDix ©1996 1/27

creating files

intfd = creat(path,mode)

char*path — the name/ path of the (new) file
int mode — permissions for the new file
int d — returns a file descriptor

o fileis created if it doesn’t exist
e if it already exists, acts like an open for writing
* negative return on failure

e mode sets the initial permissions, e.g.
mode=S RWXUSR|S IRGRP|S_IXGRP|S IXOTH
— read/write/execute for user (S_RWXUSR
— read/execute for group (S IRGRP|S_IXGRP)
— execute only for others (S_IXOTH)

e when created, file descriptor is open for writing
[J even if permissions do not include write access

e alternative — use open with special flags:

intfd = open(path, O WRON|YD_CREATO TRUNgNode)
* O _CREATlag says “create if it doesn’t exist”
* note extra mode parameter

lskytmlnzi \Short Course Notes AlanDix ©1996 1/28

deleting files

e UNIX rm command ‘deletes’ files

e itusestheunlink system call

Intres = unink(path)
char*path — the name/ path of the file to remove
int mode — permissions for the new file
nt res — returns an integer 0 - oK

1 - fail
e doesn’t necessarily delete file!
e but neither does rm

e UNIX filenames are pointers to the file

e there may be more than one pointer

lskytmlnzi \Short Course Notes AlanDix ©1996 1/29

hard links

* linking to an existing file:
1 shell — Intom fred
0 systemcall — link('tom"fred)

e file tom must already exist

e fred points to the same file as tom
fred on

e uwink simply removes a pointer

e file destroyed only when last link goes

lskytmlnzi \Short Course Notes AlanDix ©1996 1/30

symbolic links

e ‘hard’ links are limited:
0 cannot link to a different disk
0 only one link to a directory

(actually not quite true as there are all the “..” links)

e symbolic links are more flexible
1 shell — In s tomfred
0 system call — symlink(tom",fred’)

e tom need not exist

e fred points to the name ‘tom” — an alias
fed —won

lskytmlnzi \Short Course Notes AlanDix ©1996 1/31

links and updates

cpfredtom Infred tom In-sfred tom

fred on fred bn fed —DOn

e update file tom
fred omn

fred on
Y
2 m @
e delete file tom — unink('tom")
fred fom

¢$m\72n
3 [O

e whatis in fred?

@pk—

&) <2

il \Short Course Notes

renaming files

Intres = rename(pathl,path2)
char*path — the name/ path of the (new) file

int d — returns a file descriptor
e system call used by UNIX mvcommand

e only possible within a file system

]

path2 is unlinked
path2 is linked to the file pointed to by pathl
[pathl isunlinked

]

e result: path2 points to the file pathl used to point to

e.g. rename(fred",'tom")

bm

lskytmlnzi \Short Course Notes AlanDix ©1996 1/33

directories

e special system calls
to create and remove directories

Intres = mkdir(path,mode)

char*path — the path of the new directory

int mode — permissions for the new directory

nt res — returns an integer 0 - oK
1 - fail

e mkdir rather like creat

intres = rmqdir(path)
char*path — the path of the directory to remove
int res — returns an integer 0 - oK

1 - fail
e unlikeunlink does delete directory!
e but only when empty

lskytmlnzi \Short Course Notes AlanDix ©1996 1/34

0 O 0O 0O HandsonoO O 0O O

[1 m has various options

[1 soitishard to delete files with strange names
such as *-b’ — I know I got one once!

[1 write a program raw-rm.c which has one command
line argument, a file to delete, and performs an
unlink system call on it

[] modify raw-m so that it can take a list of files:
raw-m tom diick harry

[] write a version of mvthat doesn’t use the rename
system call, but only link and unink

[1 NB.if you get the order wrong you’ll loose the file!

lskytmlnzi \Short Course Notes AlanDix ©1996 1/35

LSJSNJ“?K Session 5
ogra terminal I/O

terminals are just files?
tty drivers

stty and gty

handling input
thetemmcap database
toolkits

using it

Short Course Notes Alan Dix ©1996 1/36

terminals are easy?

e terminal is default input/output

e read and write just like any file

0 use read/write system calls
0 orstdio

* interactive programs — a doddle

prnti’ What is your name?"";
gets(ouf)
printi(‘hello %6s how are you today\n*jouff);

[] get line editing for free

[l paper-roll model of interaction
0 only see user input in whole lines

e terminals not quite like other files:
0 write anywhere on screen
0 cursor movement
0 special effects (flashing, colours etc.)
0 non-standard keys: ctrl, alt, F3 etc.

lskytmlnzi Short Course Notes AlanDix ©1996 1/37

tty drivers

* never connected directly to terminal

e tty driver sits between

0 does line editing

0 handles break keys and flow control
(ctrl-C, ctrl-\, ctrl-S/ctrl-Q)
0 translates delete/end-of-line chars

* notalways wanted!

your
program

|j‘tty drlveL‘
UNIX kernal

@MX Short Course Notes AlanDix ©1996 1/38

stty command

e control the tty driver from the shell

$ styeverything
$ sty-echo
$ < type something —no echo>

$ reset

e stty differs between UNIXs!

e can control

echoing
parity, stop bits etc. for modems
carriage return / newline mapping
delete key mapping (delete/backspace)
break key activity
line editing

and more

OO 0Oo0O-dao

lskytmlnzi Short Course Notes AlanDix ©1996 1/39

gtty & stty functions

e you can do the same from a program

#indude <sgity.h>
intecho_off(tty fd)
inttty fd;

{
struct sgityb buf,
gtty(tty_fd &buf);
bufsg flags &=~ECHO;
retum sty(tty fd,&ouf);

}

e sg_flags — abitmap of option flags

o thesgtyp structure has other fields

0 line speeds (sg_ispeed , sg_ospeed)
0 erase and kill chars (sg erase ,sg kil)

(word and line delete)

e gity andstty depreciated now
0 more options available through ioctl
0 but they are the ‘traditional” UNIX calls
0 and simpler!

lskytmlnzi Short Course Notes AlanDix ©1996 1/40

raw, cbreak and cooked

* normal tty processing
0 echoing of all input
0 some output translation
0 line editing
0 break characters
called ‘cooked” mode

e visual programs do not want this
0 usestty orioctl to control

e raw mode
bufsg_flags |- RAW,

0 suppress all input and output processing
0 echoing still occurs — use ECHit

e cbreak (half-cooked) mode
bufsy flags [= CBREAK;

O as for raw
0 but break key (ctrl-C) enabled

2 remember to save and reset the mode!

lskytmlnzi Short Course Notes AlanDix ©1996 1/41

handling input

e with raw & cbreak

0 don’t have to wait for a line end
0 get characters as they are typed
0 including delete key

* key - input mapping?

0 simple for ascii keys: Akey — ‘@ et

0 others - single char: backspace — 08

0 some — lots 4 key » ESCA
* prefixes

0 one key may be a prefix of another!

e.g. functionkey F3 — ESGI9~
escape key — ESC
0 youread ESC
? how do you know which key

e solutions

0 wait for next character
[J could wait a long time!
0 assume that the whole code is read at once
[0 notalways true
O as O but with timeout
[1 best solution
[J introduces delays
[0 may still fail (swopped out)

lskytmlnzi Short Course Notes AlanDix ©1996 1/42

termcap

e different kinds of terminals

0 different screen sizes (80x25 ?)

O different capabilities (ﬂashing, underline, ...)
0 different keyboards

0 different screen control characters

e how do you know what to do?
[write terminal specific code

[1 use termcap

[0 environment variable TERM
gives terminal type eg w100 ,v52 etc.

[0 Jetctermcap database

gives capabilities and codes for each type

doM100Mt100-amvt100amjdec 100\
:do="J:00t80#24:c=50EHE[2JSFH\ED:
le="Hbs:amcm=5\E[%6%0d:YedHNA=2E[Cup=2E[A\

< 7more lines! >

0 each item gives a code/ capability

eg. 007\J - send ctrl-] to move cursor down
00#80 - 80 columns

lskytmlnzi Short Course Notes AlanDix ©1996 1/43

termcap library

e read /etctermcap directly?

e temcap library has functions to help
CC-0My-Vis my-vis.c termcap

0 tgetent(valiname)
— get the info for terminal thame

O tgetnum(d)

— return the number for capability d

0 getiag(d)
— test for capability O

0 igesi(d)

— return the string value for o
0 tgoto(codecolfine)
— generate a cursor addressing string

0 tputs(strjines_affected,output f)
— outputs with appropriate padding

e not exactly a high-level interface

lskytmlnzi Short Course Notes AlanDix ©1996 1/44

curses and toolkits

e various high-level toolkits available
e.g. curses, C-change

e auses isthe UNIx old-timer!

CC -0 Mmy-Cur my-cur.c -curses -termcap

* many functions including:
O initson) & endwin()
— start and finish use

O move(inecol)
— cursor positioning
0 pntain,)

— formatted output

0 mvpinw(inecolimt, ..)
— both together!

0 mvgetchlc) |, mvgetstr(.cou)

— read user input
0 mvinch()
— read screen
0 deaf() |, refresh(
— clear and refresh screen
O chreak() ,nocbreak() ,echo) ,raw(,
— setting terminal mode

lskytmlnzi Short Course Notes AlanDix ©1996 1/45

0 O 0O 0O HandsonoO O 0O O

[] wusestty at the shell to set echo, cbreak and raw

$ cat

< type a few lines to see what it normally does >
D
$ sty chreak
$ cat

< type a bit >

D

$ styraw
$ echohelo

[] usecat tosee what codes your terminal produces

$ cat
< type lots of keys and things >

D
$

[try entering and running the following:

#indude <cursesh>

initscr();
clear();
Mvprintv(10,30, heloworid!™);
move(205);
refresh();
enawin);
}

[1 what happens if you leave out the refresh() call

@MX Short Course Notes AlanDix ©1996 1/46

LSJSNJ“?K Session 6
ogra signals and time

e what are signals

e thesignal system call

e problems of concurrency
e finding the time

e going to sleep

L] using it

lﬂmx Short Course Notes AlanDix ©1996 1/47

signals

e interacting with the world
0 file/tty input - what
0 signals — when

e signals happen due to:

[J errors
SGFPE - floating point error
SIGSEGV — segment violation
(usually bad pointer!)
0 1Interruptions
SIGKILL - forces process to die
SGINT - break key (ctr]l-C)

0 things happen

SIGALRM — timer expires
SIGCHLD — child process has died

0 I/0event

SIGURG - urgent data from network
SIGPIPE - broken pipe

lskytmlnzi Short Course Notes AlanDix ©1996 1/48

catching signals

[]

default action for signals

[0 some abort the process
[J some ignored

you can do what you like
[0 solong as you catch the signal
0 and it's not SIGKILL (signal 9)

write the code that you want run

intmy_handier()
my_flag=1\;

use the signal system call to tell UNIX about it

| SgnalSIGQUIT my._handier

when the signal occurs UNIX calls my_handler

when you no longer require a signal to be caught

signal(SIGQUIT,SIG_IGN);
signal(SIGFPE,SIG._DFL);

lskytmlnzi Short Course Notes AlanDix ©1996 1/49

care with signals

signal handlers can run at any time

nti=0;

intmy_handiex()

{ I=i+1

}

?la'no
signal(SIGINT,my_hander);
o)

if(i>0){
do_something();
i=i-1
}
}
intention:

execute do_something once per interrupt

what actually happens:
[0 interrupt processed (1)
[1 dosomething executes
[J main calculatesi-1 gets result O
0 before it stores the result ...
another interrupt (=2)
0 man stores result (i=0)

lskytmlnzi Short Course Notes AlanDix ©1996 1/50

working with time

e processes need to tell the time

[1 absolute time: 15:17 on Thursday 21st March
] elapsed time: that took 3.7 seconds

e and time their actions

[0 delays: wait for 5 seconds
[0 alarms: at 11.15pm do the backup

e delays easy

[J sleep(f) system call
[1 waits fort seconds
[1 atleast!

seep(®); # waitsfor atleast5 seconds

* cannot guarantee time

[0 other processes may be running
[J not a real-time operating system

® alarms covered in UNIX Systems Programming II

lskytmlnzi Short Course Notes AlanDix ©1996 1/51

finding the time

 UNIX time started on 1st January 1970!

e tlime system call returns seconds 1/1/1970

#indude <sysftypesh>
#indude <systime.h>

time_tt=tme(NULL);

e ftime gives you milliseconds and timezone too

#ndude <sysfimebh>
struct timeb tmb;
intres =fime(&mb);

e the process does not run all the time
clock gives cpu time used in psecs

long cpu_t=clock();

N.B. times gives you more information about cpu usage

lskytmlnzi Short Course Notes AlanDix ©1996 1/52

telling the time

e users don’t measure time in seconds since 1/1/1970!

e collection of functions to do conversions
between four time formats

[] seconds since 1/1/1970
0 stucttimeb (from ftime)
O stuctim (gives year, day, hour etc.)
[ascii representation as C string:
"Sun Sep 16 01:0352 1973\n"
0 - 0O localtime, gmtime
U -0 asciime
O -0 dime
0 - 0O timelocal, imegm

0 also dysize(yr) — number of days in year yr

e local variants give local time
gn variants give Greenwich Mean Time

e see man3ctime for more details

lskytmlnzi Short Course Notes AlanDix ©1996 1/53

0 O 0O 0O HandsonoO O 0O O

[1 write a program to see how ‘lazy’ sleep is!

[1 it should:
[0 get the time using both clock and time
0 print both
0 do a Seep®)
[0 get the times again
[0 and print them

[1 run it several times and record the results

[1 printing at 0 adds a delay,
modify the above plan to make it right
and also get it to print the time elapsed as
measured by clock and time

[] run this version and compare results with the first

1 try the program in the “care with signals” slide

lskytmlnzi Short Course Notes AlanDix ©1996 1/54

LSJSNJ“?K Session 7
ogra mixing C and scripts

e shell scripts
e what are they good for?

e information shell - C

e results C - shell

[l example

@MX Short Course Notes AlanDix ©1996 1/55

shell

e the shell is a programming language
0 data:

environment variables (character strings)
whole files

0 control flow:
similar + special features

0 procedures:
shell scripts

e shell and C:
o shell:

[0 good at manipulating files and programs
[slow for intensive calculation

o C

[J fast and flexible
[0 longer development cycle

e use them together

lskytmlnzi Short Course Notes AlanDix ©1996 1/56

shell scripts

e shell scripts are files:

[starting with:
#l/bin/sh

[containing shell commands

[] made executable by
chmod a+x

e executed using a copy of the shell

$ cat >my-first-script
#1/bin/sh

echo hello world

$ chmod a+x my-first-script
$ my-first-script

hello world

$

lskytmlnzi Short Course Notes AlanDix ©1996 1/57

It's good to talk

¢ shell and C need to communicate

e shell - C

0 standard input:
large amounts of data

0 command line arguments:
file names, options

0 environment variables:
long-term preferences & settings

e (C - shell

0 standard output:
large amounts of data

0 standard error:
[0 normally only to the user

0 exit code:
success/ failure or single number

lskytmlnzi Short Course Notes AlanDix ©1996 1/58

shell - C

e standard input
— not just files!

[0 singleline - use €ChO and pipe
echo helo [myprog

[1 lotsoflines — use HERE file

my+prog <<HERE
thisistwolines

> oftext

> HERE

¢ command line arguments

[0 shell pattern matching is great
[0 letit check and pass good args in

e environment variables

[J inwards only!

lskytmlnzi Short Course Notes AlanDix ©1996 1/59

C - shell

e standard output

0 redirect to file

My-prog some-args >fred.out

0 pipeit

My-prog some-args | more-progs

0 or use backquotes!

nyvar="my-prog some-args

e exit code

0 remember: 0 = success
O useif ,while etc

fmy-prog some-args
then
echoOK
eke
echofaied
f

0 oruse$?

My-orog some-args
echoretumed $?

@MX Short Course Notes AlanDix ©1996 1/60

0 OO0 0 exampleo 0 0O O

[the following numc.c is a filter for numbering lines

#indude <stdio.h>
char bufff256}
?HHO
intineno;
for (Ineno=1, gets(buff); ineno++)
printi’ %e4d: %es\n" ineno buff);

[1 we would like to give it arguments

$ numcfred
1: fred’s first line
2: the second line of fred

[] too much work!
1 use a shell script

L] we'll call it num

#binsh
case$#in
0) numc; exit0; #fiter mode

esac
fori #loopsthrough al arlguments
d

echo,echo™—4—"

numc<$
done

@MX Short Course Notes AlanDix ©1996 1/61

random access

® normally read /write are serial
0 move forward byte by byte through the file

® |[seek allowsrandom access

off tpos = lseek(fdoffsetflag)

int fd — an open file descriptor
off_toffset — number of bytes to seek
(negative means back)
int flag — where to seek from:
LSET - beginning of file
LINCR - current position
L XIND — end of file
off_tpos — the old position in the file

(N.B.off_t isactually a long int!)

® moves the 1/0 position forward or back by offset

e finding where you are without moving;:

0 move zero (OL) from current position (L_INCR)
0 t®© function — used to be a system call!

lskytmlnzi Short Course Notes Alan Dix ©1996 1/iii

	UNIX Systems Programming I
	course outline
	session 1 - UNIX basics
	session 2 - file I/O and filters
	session 3 - makefiles and arguments
	session 4 - file manipulation
	session 5 - terminal I/O
	session 6 - signals and time
	session 7 - mixing C and scripts
	addenda - random access

