
UNIX Systems Programming I

Short Course Notes

Alan Dix © 1996

http://www.hcibook.com/alan/

UNIXSystems
ProgrammingI
UNIXSystems
ProgrammingI

UNIXSystems
ProgrammingI

UNIXSystems
Programming I

UNIXSystems
ProgrammingI

http://www.hcibook.com/alan/

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/i

UNIXSystems
ProgrammingI

Course
Outline

Alan Dix

http://www.hcibook.com/alan/

Session 1 UNIX basics the UNIX API, system calls
and manuals

Session 2 file I/O and filters standard input and output, read,
write and open

Session 3 makefiles and
arguments

make, argc & argv and
environment variables

Session 4 file manipulation creating and deleting files and
directories, links and symbolic
links

Session 5 terminal I/O similarities to file I/O, ttyÊdrivers,
stty & gtty, termcap and curses

Session 6 signals and time catching signals and problems
that arise, delays and finding the
time

Session 7 mixing C and scripts shell scripts, getting information
between C and shell, putting
them together

http://www.hcibook.com/alan/

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/ii

UNIXSystems
ProgrammingI Reading

¥ The Unix V Environment,
Stephen R. Bourne,
Wiley, 1987, ISBN 0 201 18484 2
The author of the Borne Shell! A 'classic' which deals with system
calls, the shell and other aspects of UNIX.

¥ Unix For Programmers and Users,
Graham Glass,
Prentice-Hall, 1993, ISBN 0 13 061771 7
Slightly more recent book also covering shell and C programming.

Ì BEWARE Ð UNIX systems differ in details,
check on-line documentation

¥ UNIX manual pages:
man creat etc.

Most of the system calls and functions are in section 2 and 3 of the
manual. The pages are useful once you get used to reading them!

¥ The include files themselves
/usr/include/time.h etc.

Takes even more getting used to, but the ultimate reference to
structures and definitions on your system.

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/1

UNIXSystems
ProgrammingI Session 1

UNIX basics

¥ the nature of UNIX

¥ the UNIX API

¥ system calls and library calls

¥ system call conventions

¥ how they work

¥ UNIX manuals and other info

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/2

UNIX

UNIX is an operating system

file store programsnetworks etc.

UNIX

It manages:
¥ files and data
¥ running programs
¥ networks and other resources

It is defined by
¥ its behaviour (on files etc.)
¥ its application programmers interface Ð API

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/3

UNIX API – the system calls

¥ ultimately everything works through system calls

shell

file store programsnetworks etc.

UNIX

API

system
daemons

user
applications X

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/4

first system call – exit

void exit(int status)

¥ program ends!

¥ its exit code is set to status

¥ available to shell:
$? Ð Bourne shell
$status Ð C shell

¥ actually not a real system call!
❍ does some tidying up
❍ real system call is _exit

¥ example:
❍ does some tidying up
❍ program test-exit.c :

main()
{

exit(3);
}

❍ run it:

$ cc -o test-exit test-exit.c
$ test-exit
$ echo $?
3
$

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/5

system calls and library calls

¥ system calls
❍ executed by the operating system
❍ perform simple single operations

¥ library calls
❍ executed in the user program
❍ may perform several tasks
❍ may call system calls

¥ distinction blurs
❍ often a thin layer
❍ compatability with older UNIX calls (e.g. pipe)

¥ kinds of library:
❍ UNIX functions Ð layers and O/S utilities
❍ stdio & ANSI C libraries

Ð platform independent functions
❍ other libraries

Ð for specialist purposes (e.g. NAG)

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/6

system call conventions

¥ library functions often return pointers
FILE * fp = fopen("harry","r");

⇒ NULL return for failure

¥ system calls usually return an integer
int res = sys_call(some_args)

¥ return value
❍ res >= 0 Ð OK
❍ res < 0 Ð failure

¥ opposite way round!
⇒ cannot use as Boolean:

if (sys_call(some_args)) { ... ✘ wrong

¥ see the global variable errno for more info

¥ many system calls take simple arguments

¥ but some take special structures

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/7

how they work

① program gets to the system call in the userÕs code
int res = sys_call(some_parameters)

② puts the parameters on the stack
③ performs a system ÔtrapÕ Ð hardware dependent

✰ ✰ now in system mode ✰ ✰

④ operating system code may copy large data
structures into system memory

⑤ starts operation
if the operation cannot be completed immediately
UNIX may run other processes at this point

⑥ operation complete!
⑦ if necessary copies result data structures back to

user programÕs memory

⑧ ✰ ✰ return to user mode ✰ ✰

⑨ user program puts return code into res
⑩ program recommences

¥ UNIX tries to make it as cheap and fast as possible

¥ but system calls are still ÔexpensiveÕ
(compared to ordinary functions)

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/8

finding out

¥ donÕt expect to remember everything
. . . I donÕt!

¥ even if you did versions differ

¥ places to look:
❍ manuals

Ð paper or using man command
Ð may need to give man the section:

e.g. man 2 stat

❍ apropos
Ð especially to find the right man page

e.g. apropos directory

❍ look at the source!
Ð read the include file
Ð find the right include file:

fgrep dirent /usr/include/*.h
fgrep dirent /usr/include/sys/*.h

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/9

UNIX manuals

¥ divided into sections

1 Ð shell commands
e.g. mv, ls, cat

2 Ð system calls
e.g. _exit, read, write

3 Ð library calls (including stdio)
e.g. exit, printf

4 Ð device and network specific info
e.g. mv, ls, cat

5 Ð file formats
e.g. passwd, termcap

6 Ð games and demos
e.g. fortune, worms

7 Ð miscellaneous
e.g. troff macros, ascii character map

8 Ð admin functions
e.g. fsck, network daemons

¥ UNIX manual reading . . .
. . . a bit of an art

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/10

UNIXSystems
ProgrammingI Session 2

file I/O and filters

¥ standard input and output

¥ filters

¥ using read and write

¥ opening and closing files

¥ low-level I/O vs. stdio

¥ mixing them

☞ using it

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/11

input and output

each running program has numbered input/outputs:

0 Ð standard input
¥ often used as input if no file is given
¥ default input from the user terminal

1 Ð standard output
¥ simple program's output goes here
¥ default output to the user terminal

2 Ð standard error
¥ error messages from user
¥ default output to the user terminal

these numbers are called file descriptors
¥ used by system calls to refer to files

0 1

2

input output

errors

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/12

redirecting from the shell

default input/output is user's terminal

redirection to or from files:

❍ command <fred

Ð standard input from file 'fred '

0 1

2

output

errors

'fred '

❍ command >harry

Ð standard output goes to file 'harry '

0 1
2

input

errors

'harry '

Ð file is created if it doesn't exist
N.B. C shell prevents overwriting

❍ command >>harry

Ð similar, but appends to end of 'harry '

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/13

redirection of standard error

❍ command 2>errlog

Ð standard error goes to file 'errlog '

0 1
2

input output

'errlog '

❍ command 2>>errlog

Ð standard error appends to end of 'errlog '

❍ command 2>&1
Ð standard error goes to current

destination of standard output

0 1
2

input output

errors

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/14

filters

¥ some commands only work on named
files:

e.g. copying Ð cp from-file to-file

¥ many take standard input as default
cat, head, tail, cut, paste, etc.

¥ these are called filters
Ð very useful as part of pipes

¥ also very easy to program!

✔ donÕt have to worry about
❍ command line arguments
❍ opening or closing files

¥ just read-process-write

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/15

read & write

ret = read(fd,buff,len)
int fd Ð a file descriptor (int), open for reading
char *buff Ð buffer in which to put chars
int len Ð maximum number of bytes to read
int ret Ð returns actual number read

¥ ret is 0 at end of file, negative for error
¥ buff is not NULL terminated

leave room if you need to add Ô\0Õ!

ret = write(fd,buff,len)
int fd Ð a file descriptor (int), open for writing
char *buff Ð buffer from which to get chars
int len Ð number of bytes to write
int ret Ð returns actual number written

¥ ret is negative for error, 0 means Òend of fileÓ
ret may be less than len e.g. if OS buffers full
* should really check and repeat until all gone *

¥ buff need not be NULL terminated
if buff is a C string, use strlen to get its length

N.B. Both may return negative after interrupt (signal)

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/16

example – file translation

¥ a Macintosh → UNIX text file conversion program

main() {
char buf[256];
for(;;) {

int i
int n = read(0,buf,256); ➀
if (n <= 0) exit(-n); ②
for (i=0; i<n; i++)

if (buff[i] == ‘\r’) ③
buff[i] = ‘\n’;

write(1,buf,n); ④
}
exit(0);

}

① read from file descriptor 0 Ð standard input
buffer size is 256 bytes
number of bytes read goes into n

② end of file (0) or error (n<0) both exit
the -n means that end of file gives a zero exit code

③ Macintosh uses carriage return '\r' to end lines
UNIX uses newline '\n'

④ writing to 1 Ð standard output
remember only write n bytes not 256!

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/17

opening and closing files

#include <fcntl.h>

int fd = open(name,flags)
char *name Ð name of the file to open
int flags Ð read/write/append etc.
int fd Ð returns a file descriptor

¥ in simple use flags is one of:
O_RDONLY Ð read only (0)
O_WRONLY Ð write only (1)
O_RDWR Ð read and write (2)

but can ÔorÕ in other options

¥ negative result on failure
❍ file doesnÕt exist
❍ do not have permissions

¥ closing files is simpler!

int res = close(fd)
int fd Ð an open file descriptor
int ret Ð returns: 0 OK

-1 failed

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/18

low-level I/O vs. stdio

¥ why use low-level I/O?
❍ less layers ≈ more efficient
❍ more control Ð e.g. random access
❍ sometimes have to Ð e.g. networks

¥ can you mix low-level I/O and stdio?
✔ yes
✘ with care!

¥ different files/devices
✔ no problem

¥ same file
✘ stdio is buffered

printf("hello ");
write(1,"there ",6);
printf("world\n");

➥ output:
there hello world

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/19

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ write a simple cypher filter: cypher.c

☞ the filter should copy standard input to standard
output adding 1 to each byte:

a→b, b→c, c→d, d→e, etc.

☞ it will be similar to the Mac→UNIX translator
except that the loop should add 1 rather than
replace carriage returns with line feeds

☞ to make a better cypher, you could add a different
number or have a 256 byte array to act as the cypher

☞ compile either with Ôcc Õ Ð the old K&R C compiler:
 cc -o cypher cypher.c

☞ or with Ôacc Õ Ð the ANSI C compiler:
cc -o cypher cypher.c

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/20

UNIXSystems
ProgrammingI Session 3

makefiles and
arguments

¥ make

¥ argv and argc

¥ environment variables

☞ using it

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/21

make

ÔmakeÕ is a UNIX command which:
¥ automates program construction and linking
¥ tracks dependencies
¥ keeps things up-to-date after changes

to use it:
❍ construct a file with rules in it

you can call it anything, but Ômakefile Õ is the default

❍ run ÔmakeÕ itself
make target

– (uses the default makefile)
make -f myfile target

– (uses the rule file myfile)
either rebuilds the program Ôtarget Õ if necessary

¥ each makefile consists of:
❍ definitions
❍ rules

¥ rules say how one thing depends on another
they are either:
❍ specific Ð e.g. to make mail-client do this ...
❍ generic Ð e.g. to make any Ô.o Õ from its Ô.cÕ ...

 make is also available in many other programming environments

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/22

makefile format

Definitions
¥ general form:

variable = value

¥ example:
SDIR = tcp
MYLIBS = $(SDIR)/lib

N.B. one variable used in another's definition

¥ make variables are referred to later using $
e.g. $(SDIR), $(MYLIBS)

¥ expanded like #defines or shell variables
(some versions of make will expand shell variables also)

Rules (just specific rules)

¥ general form:
target : dependent1 dependent2 ...

command-line

 ↑ N.B. this must be a tab

¥ example:
myprog: myprog.o another.o

cc -o myprog myprog.o another.o $(MYLIBS)

this says:
to make myprog you need myprog.o and another.o
if either of them is newer than myprog rebuild it using the
then rebuild it using the command: Òcc -o myprog ...Ó

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/23

argc & argv

int main(int argc, char **argv) ...
or: int main(int argc, char *argv[]) ...

¥ one of the ways to get information into a C program

¥ in UNIX you type:
myprog a "b c" d

the program gets:
argc = 4 Ð length of argv

argv[0] = "myprog" Ð program name
argv[1] = "a"
argv[2] = "b c" Ð single second argument
argv[3] = "d"
argv[4] = NULL Ð terminator

N.B. ❍ DOS is identical (except argv[0] is NULL early versions)

❍ argc is one less than the number of arguments!

¥ other ways to get information in (UNIX & DOS):
❍ configuration file (known name)
❍ standard input
❍ environment variables using getenv()

or (UNIX only) third arg to main:
main(int argc, char **argv, char **envp)

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/24

environment variables

¥ set of name=value mappings
¥ most created during start-up (.profile, .login etc.)

setting a variable from the shell:
myvar =hello

var2 =" a value with spaces needs to be quoted"

export myvar

¥ no spaces before or after '=' sign
¥ variables need to be exported to be seen

by other programs run from the shell
¥ in C shell: "set name=val " and no export

listing all variables from the shell:

$ set
HOME=/home/staff2/alan
myvar=hello
PATH=/local/bin:/bin:/local/X/bin
USER=alan
 . . .
$

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/25

environment variables – 2

¥ accessing from a program Ð 3 methods

① extra argument to main
main(int argc,char **argv,char **envp)

② global variable
extern char **environ

③ system function
char *value = getenv(name);

¥ both ① and ② give you a structure similar to argv

❍ a null terminated array of strings
❍ but environment strings are of the form

name=value

¥ the getenv function ③ rather different
❍ fetches the value associated with name

❍ returns NULL if name not defined

¥ also a putenv function
❍ only available to this process and its children
❍ not visible to the shell that invoked it

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/26

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ write a program to produce a list of arguments as in
the 'argc & argv' slide

☞ the core of your program will look something like:

for(i=0; i<argc; i++)
printf("argv[%d] = %s\n",argv[i]);

☞ if you use ÔccÕ then the ÔmainÕ program begins:

main(argc,argv)
 int argc;
 char **argv;

the slide shows the ANSI C declaration

☞ do a similar program for environment variables

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/27

UNIXSystems
ProgrammingI Session 4

file manipulation

¥ creating new files

¥ ÔdeletingÕ files

¥ linking to existing files

¥ symbolic links

¥ renaming files

¥ creating/removing directories

☞ using it

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/28

creating files

int fd = creat(path,mode)
char *path Ð the name/path of the (new) file
int mode Ð permissions for the new file
int fd Ð returns a file descriptor

¥ file is created if it doesnÕt exist
¥ if it already exists, acts like an open for writing
¥ negative return on failure
¥ mode sets the initial permissions, e.g.

mode = S_RWXUSR | S_IRGRP | S_IXGRP | S_IXOTH
Ð read/write/execute for user (S_RWXUSR)
Ð read/execute for group (S_IRGRP | S_IXGRP)
Ð execute only for others (S_IXOTH)

¥ when created, file descriptor is open for writing
❇ even if permissions do not include write access

¥ alternative Ð use open with special flags:
int fd = open(path, O_WRONLY| O_CREAT| O_TRUNC, mode)

¥ O_CREAT flag says Òcreate if it doesnÕt existÓ
¥ note extra mode parameter

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/29

deleting files

¥ UNIX rm command ÔdeletesÕ files

¥ it uses the unlink system call

int res = unlink(path)
char *path Ð the name/path of the file to remove
int mode Ð permissions for the new file
int res Ð returns an integer 0 Ð OK

-1 Ð fail

¥ doesnÕt necessarily delete file!

¥ but neither does rm

¥ UNIX filenames are pointers to the file

¥ there may be more than one pointer

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/30

hard links

¥ linking to an existing file:
❍ shell Ð ln tom fred
❍ system call Ð link("tom","fred")

¥ file tom must already exist

¥ fred points to the same file as tom
to mfred

¥ unlink simply removes a pointer

¥ file destroyed only when last link goes

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/31

symbolic links

¥ ÔhardÕ links are limited:
❍ cannot link to a different disk
❍ only one link to a directory

(actually not quite true as there are all the Ò..Ó links)

¥ symbolic links are more flexible
❍ shell Ð ln -s tom fred
❍ system call Ð symlink("tom","fred")

¥ tom need not exist

¥ fred points to the name Ôtom Õ Ð an alias
to mfred

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/32

links and updates

cp fred tom ln fred tom ln -s fred tom

fred to m to mfred to mfred

¥ update file tom

fred to m to mfred to mfred

¥ delete file tom Ð unlink("tom")

fred tom to mfred tomfred

¥ what is in fred?

fred fred ?fred

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/33

renaming files

int res = rename(path1,path2)
char *path Ð the name/path of the (new) file
int fd Ð returns a file descriptor

¥ system call used by UNIX mv command

¥ only possible within a file system

① path2 is unlinked
② path2 is linked to the file pointed to by path1

③ path1 is unlinked

¥ result: path2 points to the file path1 used to point to

e.g. rename("fred","tom")

fred tom fred to m

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/34

directories

¥ special system calls
to create and remove directories

int res = mkdir(path,mode)
char *path Ð the path of the new directory
int mode Ð permissions for the new directory
int res Ð returns an integer 0 Ð OK

-1 Ð fail

¥ mkdir rather like creat

int res = rmdir(path)
char *path Ð the path of the directory to remove
int res Ð returns an integer 0 Ð OK

-1 Ð fail

¥ unlike unlink does delete directory!

¥ but only when empty

UNIXSystems
ProgrammingI \Short Course Notes Alan Dix © 1996 I/35

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ rm has various options

☞ so it is hard to delete files with strange names
such as Ô-b Õ Ð I know I got one once!

☞ write a program raw-rm.c which has one command
line argument, a file to delete, and performs an
unlink system call on it

☞ modify raw-rm so that it can take a list of files:
raw-rm tom dick harry

☞ write a version of mv that doesnÕt use the rename
system call, but only link and unlink

☞ N.B. if you get the order wrong youÕll loose the file!

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/36

UNIXSystems
ProgrammingI Session 5

terminal I/O

¥ terminals are just files?

¥ tty drivers

¥ stty and gtty

¥ handling input

¥ the termcap database

¥ toolkits

☞ using it

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/37

terminals are easy?

¥ terminal is default input/output

¥ read and write just like any file
❍ use read/write system calls
❍ or stdio

¥ interactive programs Ð a doddle
printf("what is your name? ");
gets(buff);
printf("hello %s how are you today\n",buff);

✔ get line editing for free

✘ paper-roll model of interaction
❍ only see user input in whole lines

¥ terminals not quite like other files:
❍ write anywhere on screen
❍ cursor movement
❍ special effects (flashing, colours etc.)
❍ non-standard keys: ctrl, alt, F3 etc.

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/38

tty drivers

¥ never connected directly to terminal

¥ tty driver sits between
❍ does line editing
❍ handles break keys and flow control

(ctrl-C, ctrl-\, ctrl-S/ctrl-Q)
❍ translates delete/end-of-line chars

¥ not always wanted!

your
program

tty driver
UNIX kernal

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/39

stty command

¥ control the tty driver from the shell
$ stty everything
$ stty -echo
$ < type something Ð no echo>
$ reset

¥ stty differs between UNIXs!

¥ can control
❍ echoing
❍ parity, stop bits etc. for modems
❍ carriage return / newline mapping
❍ delete key mapping (delete/backspace)
❍ break key activity
❍ line editing

. . . and more

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/40

gtty & stty functions

¥ you can do the same from a program

#include <sgtty.h>
int echo_off(tty_fd)
 int tty_fd;
{

struct sgttyb buf;
gtty(tty_fd,&buf);
buf.sg_flags &= ~ECHO;
return stty(tty_fd,&buf);

}

¥ sg_flags Ð a bitmap of option flags

¥ the sgttyb structure has other fields
❍ line speeds (sg_ispeed , sg_ospeed)
❍ erase and kill chars (sg_erase , sg_kill)

(word and line delete)

¥ gtty and stty depreciated now
❍ more options available through ioctl
❍ but they are the ÔtraditionalÕ UNIX calls
❍ and simpler!

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/41

raw, cbreak and cooked

¥ normal tty processing
❍ echoing of all input
❍ some output translation
❍ line editing
❍ break characters

called ÔcookedÕ mode

¥ visual programs do not want this
❍ use stty or ioctl to control

¥ raw mode
buf.sg_flags |= RAW;

❍ suppress all input and output processing
❍ echoing still occurs Ð use ECHO bit

¥ cbreak (half-cooked) mode
buf.sg_flags |= CBREAK;

❍ as for raw
❍ but break key (ctrl-C) enabled

Ì remember to save and reset the mode!

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/42

handling input

¥ with raw & cbreak
❍ donÕt have to wait for a line end
❍ get characters as they are typed
❍ including delete key

¥ key → input mapping?
❍ simple for ascii keys: A key → ÔaÕ etc.

❍ others → single char: backspace → 0x8
❍ some → lots i key → ESC [A

¥ prefixes
❍ one key may be a prefix of another!

e.g. function key F3 → ESC[19~

escape key → ESC

❍ you read ESC
? how do you know which key

¥ solutions
① wait for next character

✘ could wait a long time!
② assume that the whole code is read at once

✘ not always true
③ as ① but with timeout

✘ best solution
✘ introduces delays
✘ may still fail (swopped out)

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/43

termcap

¥ different kinds of terminals
❍ different screen sizes (80x25 ?)
❍ different capabilities (flashing, underline, ...)
❍ different keyboards
❍ different screen control characters

¥ how do you know what to do?

✘ write terminal specific code

✔ use termcap
① environment variable TERM

gives terminal type e.g. vt100 , vt52 etc.
② /etc/termcap database

gives capabilities and codes for each type

d0|vt100|vt100-am|vt100am|dec vt100:\
 :do=̂ J:co#80:li#24:cl=50\E[;H\E[2J:sf=5\ED:\
 :le=̂ H:bs:am:cm=5\E[%i%d;%dH:nd=2\E[C:up=2\E[A:\
 < 7 more lines! >

❍ each item gives a code/capability
e.g. do=̂ J Ð send ctrl-J to move cursor down

co#80 Ð 80 columns

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/44

termcap library

¥ read /etc/termcap directly?

¥ termcap library has functions to help
cc -o my-vis my-vis.c -ltermcap

❍ tgetent(val,tname)
Ð get the info for terminal tname

❍ tgetnum(id)
Ð return the number for capability id

❍ tgetflag(id)
Ð test for capability id

❍ tgetstr(id)
Ð return the string value for id

❍ tgoto(code,col,line)
Ð generate a cursor addressing string

❍ tputs(str,lines_affected,output_f)
Ð outputs with appropriate padding

¥ not exactly a high-level interface

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/45

curses and toolkits

¥ various high-level toolkits available
e.g. curses, C-change

¥ curses is the UNIX old-timer!
cc -o my-cur my-cur.c -lcurses -ltermcap

¥ many functions including:
❍ initscr() & endwin()

Ð start and finish use
❍ move(line,col)

Ð cursor positioning
❍ printw(fmt, ...)

Ð formatted output
❍ mvprintw(line,col,fmt, ...)

Ð both together!
❍ mvgetch(l,c) , mvgetstr(l,c,buf)

Ð read user input
❍ mvinch()

Ð read screen
❍ clear() , refresh()

Ð clear and refresh screen
❍ cbreak() , nocbreak() , echo() , raw() ,

Ð setting terminal mode

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/46

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ use stty at the shell to set echo, cbreak and raw

$ cat
 < type a few lines to see what it normally does >

D̂
$ stty cbreak
$ cat
 < type a bit >
D̂

$ stty raw
$ echo hello

☞ use cat to see what codes your terminal produces

$ cat
 < type lots of keys and things >
D̂
$

☞ try entering and running the following:

#include <curses.h>

main()
{
 initscr();
 clear();
 mvprintw(10,30,"hello world!");
 move(20,5);
 refresh();
 endwin();
}

☞ what happens if you leave out the refresh() call

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/47

UNIXSystems
ProgrammingI Session 6

signals and time

¥ what are signals

¥ the signal system call

¥ problems of concurrency

¥ finding the time

¥ going to sleep

☞ using it

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/48

signals

¥ interacting with the world
❍ file/tty input Ð what
❍ signals Ð when

¥ signals happen due to:
❍ errors

SIGFPE Ð floating point error
SIGSEGV Ð segment violation

(usually bad pointer!)
❍ interruptions

SIGKILL Ð forces process to die
SIGINT Ð break key (ctrl-C)

❍ things happen
SIGALRM Ð timer expires
SIGCHLD Ð child process has died

❍ I/O event
SIGURG Ð urgent data from network
SIGPIPE Ð broken pipe

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/49

catching signals

¥ default action for signals
❍ some abort the process
❍ some ignored

¥ you can do what you like
❍ so long as you catch the signal
❍ and itÕs not SIGKILL (signal 9)

① write the code that you want run

int my_handler()
{

my_flag = 1\n”;
}

② use the signal system call to tell UNIX about it

signal(SIGQUIT,my_handler);

③ when the signal occurs UNIX calls my_handler

④ when you no longer require a signal to be caught

signal(SIGQUIT,SIG_IGN);
signal(SIGFPE,SIG_DFL);

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/50

care with signals

¥ signal handlers can run at any time
int i = 0;

int my_handler()
{

i = i + 1;
}

main()
{

signal(SIGINT,my_handler);
for(;;)

if (i > 0) {
do_something();
i = i - 1;
}

}

¥ intention:
execute do_something once per interrupt

¥ what actually happens:
① interrupt processed (i=1)
② do_something executes
③ main calculates i-1 gets result 0
④ before it stores the result . . .

. . . another interrupt (i=2)
⑤ main stores result (i=0)

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/51

working with time

¥ processes need to tell the time
❍ absolute time: 15:17 on Thursday 21st March
❍ elapsed time: that took 3.7 seconds

¥ and time their actions
❍ delays: wait for 5 seconds
❍ alarms: at 11.15pm do the backup

¥ delays easy
❍ sleep(t) system call
❍ waits for t seconds
❍ at least!

sleep(5); /* waits for at least 5 seconds */

¥ cannot guarantee time
❍ other processes may be running
❍ not a real-time operating system

¥ alarms covered in UNIX Systems Programming II

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/52

finding the time

¥ UNIX time started on 1st January 1970!

¥ time system call returns seconds 1/1/1970

#include <sys/types.h>
#include <sys/time.h>

time_t t = time(NULL);

¥ ftime gives you milliseconds and timezone too

#include <sys/timeb.h>

struct timeb tmb;

int res = ftime(&tmb);

¥ the process does not run all the time
clock gives cpu time used in µsecs

long cpu_t = clock();

N.B. times gives you more information about cpu usage

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/53

telling the time

¥ users donÕt measure time in seconds since 1/1/1970!

¥ collection of functions to do conversions
between four time formats

① seconds since 1/1/1970
② struct timeb (from ftime)
③ struct tm (gives year, day, hour etc.)
④ ascii representation as C string:

"Sun Sep 16 01:03:52 1973\n"

① → ③ localtime, gmtime

③ → ④ asctime

① → ④ ctime

③ → ① timelocal, timegm

❍ also dysize(yr) Ð number of days in year yr

¥ local variants give local time
gm variants give Greenwich Mean Time

¥ see man 3 ctime for more details

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/54

☞ ☞ ☞ ☞ Hands on ✍ ✍ ✍ ✍

☞ write a program to see how ÔlazyÕ sleep is!

☞ it should:
① get the time using both clock and time
② print both
③ do a sleep(5)
④ get the times again
⑤ and print them

☞ run it several times and record the results

☞ printing at ② adds a delay,
modify the above plan to make it right
and also get it to print the time elapsed as
measured by clock and time

☞ run this version and compare results with the first

☞ try the program in the Òcare with signalsÓ slide

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/55

UNIXSystems
ProgrammingI Session 7

mixing C and scripts

¥ shell scripts

¥ what are they good for?

¥ information shell → C

¥ results C → shell

☞ example

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/56

shell

¥ the shell is a programming language
❍ data:

environment variables (character strings)
whole files

❍ control flow:
similar + special features

❍ procedures:
shell scripts

¥ shell and C:
❍ shell:

✔ good at manipulating files and programs
✘ slow for intensive calculation

❍ C:
✔ fast and flexible
✘ longer development cycle

¥ use them together

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/57

shell scripts

¥ shell scripts are files:
① starting with:

#!/bin/sh

② containing shell commands
③ made executable by

chmod a+x

¥ executed using a copy of the shell

$ cat >my-first-script
#!/bin/sh
echo hello world
$ chmod a+x my-first-script
$ my-first-script
hello world
$

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/58

it’s good to talk

¥ shell and C need to communicate

¥ shell → C
❍ standard input:

large amounts of data
❍ command line arguments:

file names, options
❍ environment variables:

long-term preferences & settings

¥ C → shell
❍ standard output:

large amounts of data
❍ standard error:

✘ normally only to the user
❍ exit code:

success/failure or single number

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/59

shell → C

¥ standard input
Ð not just files!

❍ single line Ð use echo and pipe

echo hello | myprog

❍ lots of lines Ð use HERE file

my-prog <<HERE
this is two lines
> of text
> HERE

¥ command line arguments
❍ shell pattern matching is great
❍ let it check and pass good args in

¥ environment variables
❍ inwards only!

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/60

C → shell

¥ standard output
❍ redirect to file

my-prog some-args > fred.out

❍ pipe it

my-prog some-args | more-progs

❍ or use backquotes!

myvar=̀my-prog some-args̀

¥ exit code
❍ remember: 0 = success
❍ use if , while etc.

if my-prog some-args
then

echo OK
else

echo failed
fi

❍ or use $?

my-prog some-args
echo returned $?

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/61

☞ ☞ ☞ ☞ example ✍ ✍ ✍ ✍

☞ the following numc.c is a filter for numbering lines

#include <stdio.h>
char buff[256];
main()
{

int lineno;
for (lineno=1; gets(buff); lineno++)

printf("%4d: %s\n",lineno,buff);
}

☞ we would like to give it arguments

$ numc fred
 1: fred’s first line
 2: the second line of fred

✘ too much work!

✔ use a shell script

☞ weÕll call it num

#!/bin/sh
case $# in
 0) numc; exit 0;; # filter mode
esac
for i # loops through all arguments
do
 echo; echo "---- $i ----"
 numc <$i
done

UNIXSystems
ProgrammingI Short Course Notes Alan Dix © 1996 I/iii

random access

¥ normally read /write are serial
❍ move forward byte by byte through the file

¥ lseek allows random access

off_t pos = lseek(fd,offset,flag)
int fd Ð an open file descriptor
off_t offset Ð number of bytes to seek

(negative means back)
int flag Ð where to seek from:

L_SET Ð beginning of file
L_INCR Ð current position
L_XTND Ð end of file

off_t pos Ð the old position in the file
(N.B. off_t is actually a long int!)

¥ moves the I/O position forward or back by offset

¥ finding where you are without moving:
❍ move zero (0L) from current position (L_INCR)
❍ tell function Ð used to be a system call!

	UNIX Systems Programming I
	course outline
	session 1 - UNIX basics
	session 2 - file I/O and filters
	session 3 - makefiles and arguments
	session 4 - file manipulation
	session 5 - terminal I/O
	session 6 - signals and time
	session 7 - mixing C and scripts
	addenda - random access

