Designing Multithreaded Programs

in C++0x

Anthony Williams

Just Software Solutions Ltd
http://www.justsoftwaresolutions.co.uk

23rd April 2009


http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C++0x

@ Why multithreading is hard
@ Overview of the C++0x tools to help
@ Examples

@ Testing and designing concurrent code

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Multithreading is Hard

@ It's not the threads themselves, it's the communication that
causes problems.

e Mutable shared state introduces implicit communication.

@ The number of possible states increases dramatically as the
number of threads increases.

@ There are several concurrency-specific types of bugs.

@ The performance of different approaches can vary
considerably, and performance consequences are not obvious.

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

C++0x Tools for Multithreading

The C++4-0x toolset is deliberately basic, but there's a couple of
real gems. The standard provides:

Thread Launching

Mutexes for synchronization

Condition variables for blocking waits

Atomic variables for low-level code

Futures for high level concurrency design

std: :lock() for avoiding deadlock

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Futures

@ A future is a “token” for a value that will be available later
@ Focus on communication between threads

@ Synchronization details left to library

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

C++0x Support for Futures

@ std::unique_future and std::shared_future — akin to
std::unique_ptr and std::shared ptr

@ std::packaged_task where the value is the result of a
function call

@ std::promise where the value is set explicitly

@ (Possibly) std::async() — library manages thread for the
function call

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

std: :unique future / std::shared future

@ get () blocks until result available and then

e Returns stored value or
e Throws stored exception

o Use wait () to wait without retrieving the result

@ Use is_ready(), has_value() and has_exception() to
query the state.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

std: :async()

Run a function asynchronously and get a future for the return
value:

int find_the_answer_to_LtUaE();
std: :unique_future<int> the_answer=
std: :async(find_the_answer_to_LtUaE);

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

std: :async()

Run a function asynchronously and get a future for the return
value:

int find_the_answer_to_LtUaE();
std: :unique_future<int> the_answer=
std: :async(find_the_answer_to_LtUaE);

std: :cout<<the_answer.get ()<<std::endl;

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Approximating std: :async()

std: :async () is not yet in the working paper, and may not
make it into C++0x. You can write a version that always starts
a new thread quite simply:

std: :unique_future<typename std::result_of<Func()>::type>
async (Func f)

{
typedef typename std::result_of<Func()>::type
result_type;
std: :packaged_task<result_type()> task(f);
std: :unique_future<result_type> uf (task.get_future());
std: :thread t(std::move(task));
t.detach();
return uf;
}

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Numerical Integration

ny Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Exception Safety with async ()

int sum(int* start,int* end)

{

return std::accumulate(start,end,0);

void foo()
{

int x[1={...};

std: :unique_future<int> res=

async(std: :bind (sum,
&x ,x+sizeof (x)/sizeof (int)));

throw some_exception();

} // async call still running?

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

RAII to the rescue (1)

template<typename T>
class future_waiter

{
std::unique_future<T>& future;
public:
explicit future_waiter(std::unique_future<T>& f):
future(f)
{
“future_waiter()
{
future.wait();
b
s

Anthony Williams

Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

RAII to the rescue (2)

Our leaky code now becomes:

void foo()
{
int X[]={...};
std::unique_future<int> res=
async(std: :bind(sum,
&x,x+sizeof (x)/sizeof (int)));
future_waiter w(res);
throw some_exception();

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Controlling Threads Manually

Threads are managed manually with std: :thread.

@ Start a thread with the std: :thread constructor
e Wait for a thread with t.join()
@ Leave a thread to run in the background with t.detach()

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Lifetime issues with std: :thread (1)

If you don't call join() or detach() on a thread, the destructor
calls std: :terminate().

void do_stuff()
{3

int main()
{
std::thread t(do_stuff);
} // thread not joined or detached
// => std::terminate() called.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Lifetime issues with std: :thread (2)

The call to std::terminate() from the destructor protects
against lifetime-related race conditions:

void update_value(int* value)

{

*value=42;

int main()
{
int 1i;
std: :thread t(update_value,&i);
} // thread may still be running and accessing i
// => std::terminate() called.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Lifetime issues with std: :thread (3)

Even if you join at the end of the scope, you've still got the
potential for problems:

void foo()
{
int 1i;
std: :thread t(update_value,&i);
do_something(); // may throw
t.joinQ);
} // if exception thrown, join() call skipped

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Lifetime issues with std: :thread (4)

Again, you can handle this with RAII:

class thread_guard
{
std: :thread& t;
public:
explicit thread_guard(std::thread& t_):
t(tl)
{3
“thread_guard()
{
if(t.joinable())
t.join();

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Lifetime issues with std: :thread (5)

Our troublesome code now looks like this:

void foo()
{
int 1i;
std: :thread t(update_value,&i);
thread_guard guard(t);
do_something(); // may throw
} // if exception thrown, join() still called

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Key points

@ You must explicitly join or detach every thread in all code
paths.

@ You must ensure that a thread or asynchronous task is
finished before the data it accesses is destroyed.

@ RAIl can help with both of these.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Passing a series of data items

Futures are for single data items. What about a series of items?

Thread 1 Thread 2

/»llllll—\

" "

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Passing a series of data items (2)

To pass a series of items in order we need a queue — add items on
one end take them off the other.

std: :queue would do the job, but it's not thread-safe.

The simplest solution is therefore to use a std: :queue protected
by a mutex.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Building a concurrent queue

template<typename Data>
class concurrent_queue

{
std::mutex the_mutex;
std: :queue<Data> the_queue;
public:
void push(Data const& data)
{
std::lock_guard<std: :mutex> lk(the_mutex) ;
the_queue.push(data);
}
// other member functions
s

Anthony Williams

Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Racy interfaces

A mutex doesn't save us from bad interface design. std: :queue'’s
interface is not designed for concurrency.

Thread A Thread B
if(q.empty()) return;

if(q.empty()) return;
Data local=q.front();
Data local=q.front();

q.pop(O);

q.popQ);

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Encapsulate entire operation under single lock

We need to group the calls to empty (), front () and pop() under
the same mutex lock to avoid races:

bool concurrent_queue: :try_pop(Data& data)

{
std::lock_guard<std: :mutex> lk(the_mutex);
if (the_queue.empty()) return false;
data=the_queue.front();
the_queue.pop();
return true;

}

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Waiting for an item

If all we've got is try_pop(), the only way to wait is to poll:

concurrent_queue<my_class> q;
my_class d;

while(!q.try_pop(d))
std: :this_thread::yield(); // or sleep
do_stuff(d);

This is not ideal.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Performing a blocking wait

We want to wait for a particular condition to be true (there is an
item in the queue).
This is a job for std: :condition_variable:

void concurrent_queue::wait_and_pop(Data& data)
{
std::unique_lock<std::mutex> lk(the_mutex);
the_cv.wait (1k,
[&the_queue] ()
{return 'the_queue.empty();});
data=the_queue.front();
the_queue.pop();

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Signalling a waiting thread

To signal a waiting thread, we need to notify the condition variable
when we push an item on the queue:

void concurrent_queue: :push(Data const& data)
{

{
std::lock_guard<std::mutex> lk(the_mutex) ;

the_queue.push(data);
+

the_cv.notify_one();

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Contention

@ We only have one mutex protecting the data, so only one
push() or one pop() can actually do any work at any one
time.

@ This can actually have a negative impact on performance
when using multiple threads if the contention is too high.

@ Can address this with multiple mutexes or a lock-free queue,
but the complexity is much higher.

@ Lowering contention is usually a better option.

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Key points

Mutexes don’t protect you if your interface is racy.
Put entire operation inside one lock to avoid races.
Condition variables allow blocking waits.

std::lock_guard and std::unique_lock provide RAII
locking.

Notify with mutex unlocked for maximum performance.

@ Contention is still a performance killer.

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Deadlock example

Suppose you have a class with some internal state, which you've
protected with a mutex in order to make it thread-safe. Suppose
also you want to write a comparison operator:

class X {
mutable std::mutex the_mutex;
int some_data;
public:
bool operator<(X const& other) {
std::lock_guard<std: :mutex> lk(the_mutex) ;
std: :lock_guard<std::mutex> lk(other.the_mutex);
return some_data < other.some_data;

};
This seems perfectly safe at first glance...

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Deadlock (2)

... but it isn't! If you've got two objects x1 and x2, and two
threads are trying to compare them, but different ways round:

Thread A ‘ Thread B
if(x1 < x2) ... | if(x2 < x1)

The two threads will acquire the mutexes in opposite orders, which
provides the possibility of deadlock.

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Use std: :1lock to avoid deadlocks

If you do need to acquire two (or more) locks in order to perform
an operation, std: :lock is your friend. It guarantees to lock all
the supplied mutexes without deadlock, whatever order they are

given in. Our code then becomes:

bool X::operator<(X const& other)

{
std::unique_lock<std::mutex> 11(the_mutex,
std::defer_lock);
std::unique_lock<std::mutex> 12(other.the_mutex,
std::defer_lock);
std::lock(11,12);
return some_data < other.some_data;
3

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Key points

@ You can construct a std: :unique_lock without locking
using the std::defer_lock parameter.
@ std: :lock avoids deadlock for locks acquired together.
o It works on any Lockable object.

@ You can still get deadlock if locks acquired separately.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Concurrency-related Bugs

There are essentially two types of concurrency-related bug:

@ Race Conditions: Data Races, broken invariants, lifetime
issues

@ Unwanted blocking: Deadlock, livelock

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Locating concurrency-related bugs

@ Write simple testable code

Limit communication between threads to self-contained
sections

Code reviews
More code reviews
Brute force testing

Combination simulation testing

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Testing with a debug library

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Code Reviews

Here's a few things to think about when reviewing multithreaded
code:
@ Where are the communication paths?
@ Which data is shared?
@ How is the shared data protected?
@ Where could other threads be when this thread is here?
@ Which mutexes does this thread hold?
@ Which mutexes can other threads hold?
@ Is the data still valid?
°

If the data could be changed, how can we avoid this?

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

Considerations for designing concurrent code

@ How to divide work between threads
o Before processing begins (e.g. static problems, problem size
fixed at runtime)
o Dynamically during processing (e.g. recursive problems)
o Divide by task type (e.g. pipeline architecture)
@ Performance

o Cost of launching a thread and thread communication
e Data Proximity
e Contention

o False sharing

e Oversubscription

@ Exception Safety

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.justsoftwaresolutions.co.uk

References and Further Reading

The current C+4-0x committee draft: N2857
http://wuw.open-std.org/jtcl/sc22/wg21/docs/papers/
2009/n2857 . pdf

My blog: http://www.justsoftwaresolutions.co.uk/blog/

The documentation for my just::thread library is available
online at http://www.stdthread.co.uk/doc/

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2857.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2857.pdf
http://www.justsoftwaresolutions.co.uk/blog/
http://www.stdthread.co.uk/doc/
http://www.justsoftwaresolutions.co.uk

just::thread

just::thread .7

 Complete C+ + Standard Thread Library ()0 ()

just::thread provides a complete implementation of the C4+0x
thread library for MSVC 2008. gcc/linux support is currently in
alpha testing.

For a 25% discount go to:

http://www.stdthread.co.uk/accu2009

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.stdthread.co.uk/accu2009
http://www.justsoftwaresolutions.co.uk

oncurrency

{ inAction
Pk Hokibieding
Anthonsy Williams.

C++ Concurrency in Action: Practical
Multithreading with the new C++
Standard, currently available under the
Manning Early Access Program at

http://www.manning.com/williams/

Enter discount code aupromo40 for a 40% discount.

Anthony Williams

Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Designing Multithreaded Programs in C+-+0x


http://www.manning.com/williams/
http://www.justsoftwaresolutions.co.uk

