
The Askew Wall

Hugh Darwen
HD@TheThirdManifesto.com

Last updated: 03 December 2003

(background to The Third Manifesto)

Terminological Equivalences

(data) typeDomain

(object) classDomain

ColumnAttribute
Row(n-)tuple
TableRelation

Cuddly termPosh term

Cuddly term means the same as Posh term (and vice versa).

The Perversity of SQL
SELECT CITY_NAME
FROM CITY C1
WHERE 4 > (SELECT COUNT(*)

FROM CITY C2
WHERE C1.POPULATION < C2.POPULATION)

The Unperversified Version
SELECT CITY_NAME
FROM CITY C1
WHERE (SELECT COUNT(*)

FROM CITY C2
WHERE C2.POPULATION > C1.POPULATION) < 4

References

Relational Database Writings 1985-1989
by C.J.Date with a special contribution

“Adventures in Relationland”
by H.D. (as Andrew Warden)

Relational Database Writings 1989-1991
by C.J.Date with Hugh Darwen

Relational Database Writings 1991-1994
by C.J.Date

Foundation for Future Database Systems :
The Third Manifesto

by C.J. Date and Hugh Darwen

Introduction to Database Systems
(8th edition) by C.J. Date

A Brief History of Data
1960: Punched cards and magnetic tapes
1965: Disks and ‘direct access’
1969: E.F. Codd’s great vision:

“A Relational Model of Data
for Large Shared Data Banks”

1970: C.J. Date starts to spread the word
1975: Relational Prototypes in IBM:

PRTV (ISBL), QBE, System R
1980: First SQL products: Oracle, SQL/DS
1986: SQL an international standard
1990: OODB – didn’t come to much in the end
2000: XML? (shudder!)

A Brief History of Me

1967 : IBM Service Bureau, Birmingham

1969 : "Terminal Business System" – putting users in
direct contact with their databases.

1972 : Attended Date's course on database (a personal
watershed)

1978 : "Business System 12"
- a relational dbms for the Bureau Service

1985 : Death of Bureau Service (and of BS12)

1987 : Joined IBM Warwick dev. lab. Attended a Codd &
Date database conference in December

1988 : “Adventures in Relationland” by Andrew Warden.
Joined SQL standardization committee.

The Wall Around Relationland

Lots of Good Things, to be sure, but ...

• Untold damage to the Relational Model’s reputation.
• Stifled research in the relational field.

• Initiated the Dark Ages.

People even think the Wall is Relationland.

There have even been moves back to the
Higgledy-Piggledy Model of Data! (Object
Oriented Databases)

What The Askew Wall Has Done

Codd's vision has come true in the following respects:

• TABLE as the only available structure.

• Value at row/column intersection the ONLY method of storing

information.e.g., no pointers, no ordering of rows.

• Orthogonality of tables with respect to data types (domains) over

which their columns are defined.

• The catalogue is made of tables, too.

• Query language ALMOST closed over tables and does embrace

relational algebra/calculus principles (as well as regrettably departing

from them).

• Constraints expressed declaratively, in the schema, and enforced by

the dbms.

• No "record-level" (or other) subversion. but...

The Good Things SQL Has Done

• Anonymous columns.

• FROM clause restricted to named tables.

• Duplicate column names.

• Duplicate rows.

• Nulls.

• Failure to support degenerate cases (e.g. columnless

tables).

• Updating views WITHOUT CHECK OPTION.

• Failure to support “=“ properly.

• and more to come if we are not careful.

The Fatal Flaws of SQL

Ref: "The Naming of Columns", chapter 17 in RDBW 1985-89

Given :

84Relational DBDave
56Object DBCindy
68Object DBBoris
92Relational DBAnne

MarkSubjectStudent

To derive:

84
56
68
92

Mark

Relational DB
Object DB
Object DB
Relational DB
Subject

88Dave
62Cindy
62Boris
88Anne
AvgStudent

A Thematic Query Example

EXAM_MARKS

Ref: "The Naming of Columns", chapter 17 in RDBW 1985-89

Example 3:

Show the average exam mark obtained by
all students in each subject.

SELECT SUBJECT, AVG(MARK)
FROM EXAM_MARKS
GROUP BY SUBJECT

The "second" column of this table has no name!

This is a CORRECTABLE flaw (well, NEARLY
correctable).

It is NOT BYPASSABLE

Anonymous Columns

Example 4:

This is a correctable flaw. It is not generally bypassable, though sometimes
you can create a named view for the “nested” query.

Show for each student in each subject the mark obtained and the average
mark by all students in that subject.

SELECT STUDENT, E.SUBJECT, E.MARK, S.??? -- unnamed column
FROM EXAM MARKS E,

(SELECT SUBJECT, AVG(MARK)
FROM EXAM MARKS

GROUP BY SUBJECT) S
WHERE E.SUBJECT = S.SUBJECT

Note that, while lack of support for this is a fundamental error, the
suggested fix leads to queries that are difficult to write and
difficult to understand. Needlessly so!

Actually, this particular query CAN be done without nesting (exercise for
reader!), but the solution cannot be generalized.

FROM clause restricted to named tables

Example 5:

A very natural-looking join, but there are two columns called ST_NUM.
These are also duplicate columns, as it happens.

SELECT *
FROM EXAM_MARKS E, STUDENT S
WHERE E.ST_NUM = S.ST_NUM

Sometimes such joins generate two columns both called,
e.g., REMARKS, that are not duplicate columns.

Ref: “In Praise of Marriage", chapter 18 in RDBW 1985-89

Duplicate column names

Example 4 (fixed):

Show for each student in each subject the mark
obtained and the average mark obtained by all
students in that subject.

SELECT STUDENT, E.SUBJECT,E.MARK,S.AVG
FROM EXAM_MARKS AS E,

(SELECT SUBJECT,AVG(MARK) AS AVG
FROM EXAM_MARKS
GROUP BY SUBJECT) AS S

WHERE E.SUBJECT = S.SUBJECT

This is still only an optional conformance feature in
SQL:2003. I think it is very important.

Perhaps better if broken down into more digestible steps, using the new
WITH feature (SQL:1999).

The FROM clause fix

Example 4 (fixed):

WITH AVG_MARKS AS
(SELECT SUBJECT, AVG(MARK) AS AVG

FROM EXAM_MARKS
GROUP BY SUBJECT)

SELECT STUDENT, E.SUBJECT,E.MARK,A.AVG
FROM EXAM_MARKS AS E, AVG_MARKS AS A
WHERE E.SUBJECT = A.SUBJECT

WITH is an optional conformance feature in SQL:2003. Not
many implementations have it, and even those that do have
it do so only with unpleasant restrictions.

With WITH

SELECT COL1 AS X, COL2 AS X
FROM T

Enjoy!

So now you can even do this :

Duplicate Column Names (again)

Snark

“If something is true, saying it twice doesn’t make it
any truer”

(E.F. Codd, approximate quotation)

•Declare at least one candidate key for every base table.
and ask for support for system-generated keys.

•Always write DISTINCT after the word SELECT
and complain to supplier if this makes duplicate-free queries go slower.

•Never write the word ALL after UNION
and demand decent optimization here, too.

but, alas, it is not a correctable flaw.

Ref: "The Duplicity of Duplicate Rows", chapter 5 in RDBW 89-91 "The Keys of the Kingdom",
chapter 19 in RDBW 85-89, and:

This is a bypassable flaw :

Usability problems should be recognized and solved,
but NOT by departing from fundamental principles.

Duplicate Rows

Ref: "Into the Unknown", chapter 23 in RDBW 85-89. See also chapters 8 ("NOT" is not 'Not'!")
and 13 ("EXISTS is not 'Exists'!“ and the whole of part IV(chapters 17-21) in RDBW 89-91

Cause of more debate and anguish than any other Fatal
Flaw.
There's even a split in the relational camp (E.F. Codd
proposed "A-marks", "I-marks" and a 4-valued logic).
How many different things can NULL mean? Is it valid to
treat all nulls alike?
Why nulls ruin everything –

- UNION of sets, cardinality of sets.
Destruction of functional dependency theory

SQL’s implementation of nulls is even worse than the best
suggested by theoreticians. And it’s not completely
BYPASSABLE, because SQL thinks that the sum of the empty
set is NULL ! Nor is it CORRECTABLE.

Nulls

“Every relation has at least one candidate key”

“One of the candidate keys is nominated to be the primary
key”

“Nulls aren’t permitted in the primary key”

“Nulls are permitted in alternate keys”

• Consider the projection of STUDENT over RELIGION, a
nullable column.

• List the candidate keys of this relation.
• Nominate the primary key.

A Contradiction Caused by NULLS

SQL doesn’t know (much) about the EMPTY SET !

* Can’t have a table with no columns.
* Can’t DROP the only remaining column.

Correctable, not bypassable.
* Can’t SELECT no columns at all.

Correctable, somewhat bypassable.

* FROM clause can’t specify “no tables”.
Correctable, somewhat bypassable.

* Primary and foreign keys can’t be empty.
An empty PK implies at most one row.
Correctable, not bypassable.

and the above set of nullological observations is still growing.

Ref: “Table_Dee and Table_Dum, chapter 22 in RDBW 85-89, and “The Nullologist in Relationland,
or Nothing Really Matters”, chapter 13 in RDBW 89-91

Failure to Support Nothing

“Did any student obtain more than 75 marks in Database
Theory ?”

Example 6:

SELECT DISTINCT ‘YES!’
FROM EXAM_MARKS
WHERE MARK > 75 AND SUBJ = ‘Database Theory’

“What’s the time?”
Example 7:

SELECT DISTINCT CURRENT_TIME
FROM STUDENT

Bypasses for Failure to Support Nothing

Modern SQL supports user-defined “equals”
functions, for user-defined data types.

We would like to require these to honour the rule
that if a=b then for all f, f(a) = f(b)

Unfortunately SQL itself already fails to honour it:
‘A’ = ‘A ’, but Length(‘A’) < Length(‘A ’)

Unpleasant consequences for GROUP BY,
NATURAL JOIN, DISTINCT, foreign keys, etc.

“=” Is Not “equals”

(yet)
In the Relational Model, the only method of
representing information is by a value at some
row/column intersection in some table.

The proponents of TSQL2 (temporal
extensions to SQL) want "hidden" timestamps
and "hidden" surrogate keys.

Nothing wrong with systematic timestamps.
Nothing wrong with system-generated keys.

Why hide them?

The Sin SQL Has Not Committed

� The Shackle of Compatibility

� The Growth of Redundancy

� Desired extensions can be difficult or
impossible to specify (because of nulls, e.g.)

� Soundness and Elegance don’t belong in SQL

Why The Flaws Are “Fatal”

* Duplicate Rows

* Nulls

* SELECT-FROM-WHERE

* WITHOUT CHECK OPTION

* scalar subqueries

(and probably many others)

Errors Here to Stay

For example:

Enhanced view updatability in SQL3 -
(e.g., updatable joins)

requires mapping from rows in view to
rows in database.

Impossible with duplicates in the
database!

Why Duplicate Rows Hurt

Suppose “X=X” returns “unknown”

Can we safely conclude “X IS NULL” ?

Not in modern SQL!

Why Nulls Hurt Even More

For example:

1. X is ROW (1, null)

2. X is POINT (1,null)

3. X is ROW (POINT(1,1), POINT(null,3))

ROW(...) is a row “constructor”.
POINT(a,b) is a “constructor” for values in the
user-defined data type POINT.

Consequences?

How X=X Unknown Yet X NOT NULL

SELECT title,
CONTAINS_SCORE(text,’Prince’)

FROM DOCUMENTS

WHERE
CONTAINS_SCORE(text,’Prince’) > 50

See how SQL’s quaint syntax enforces
undesirable repetition? - and this is only a very
simple example!

At last this error is starting to hurt.

SELECT-FROM-WHERE

In SQL:2003, with user-defined functions:

SELECT title, score FROM
(SELECT T.*,

CONTAINS_SCORE(text,’Prince’)
AS score

FROM DOCUMENTS T) AS DUMMY
WHERE score > 50

In relational algebra:

EXTEND DOCUMENTS ADD
CONTAINS_SCORE(text,’Prince’) AS score

WHERE score > 50 {title,score}

How to Extend, then Restrict

We wish to support “nested tables” in SQL, but we are
thwarted by ill-advised syntax in SQL:1992.

SELECT DNO, (SELECT ENO
FROM EMP E WHERE
E.DNO=D.DNO) AS EMPS

FROM DEPT D

Scalar subquery or nested table ?

Scalar Subqueries

Since SQL:1992, the following features (e.g.)
have been redundant:

•subqueries

•correlation names

•doing joins in longhand

•the HAVING clause

•the GROUP BY clause

The Growth of Redundancy

E.g.:
SELECT *
FROM EMP
WHERE HIRE_DATE =
(SELECT MIN(HIRE_DATE) FROM EMP)

is the same as

SELECT *
FROM EMP NATURAL JOIN
(SELECT MIN(HIRE_DATE) AS HIRE_DATE
FROM EMP) AS POINTLESS_NAME

Why Subqueries are Redundant

“Correlation names” were needed in
old SQL pre 1992 to avoid ambiguity
when two or more columns have the
same column name.

But now SQL supports column
renaming in the SELECT clause.

This even solves the "SELECT X, X”
problem!

(SELECT X AS X1, X AS X2 ...)

Why “Correlation Names” Are Redundant

E.g.:

SELECT *
FROM EMP E, DEPT D
WHERE E.DEPTNO = D.DEPTNO

= EMP NATURAL JOIN DEPT

= EMP JOIN DEPT USING(DEPTNO)

Why Longhand Joins are Redundant

E.g.:
SELECT DEPTNO,

AVG(SAL) AS AVG_SAL
FROM EMP
GROUP BY DEPTNO
HAVING AVG(SAL) >999

=

SELECT * FROM
(SELECT DEPTNO, AVG(SAL)

AS AVG_SAL
FROM EMP
GROUP BY DEPTNO) DUMMY

WHERE AVG_SAL > 999

Why HAVING is Redundant

E.g.:
SELECT DEPTNO,

AVG(SAL) AS AVG_SAL
MAX(SAL) AS MAX_SAL

FROM EMP
GROUP BY DEPTNO

is better done by (why “better”?):

SELECT DEPTNO
(SELECT AVG(SAL) AS AVG_SAL,

MAX(SAL) AS MAX_SAL,
FROM EMP
WHERE E.DEPTNO = D.DEPTNO)

FROM DEPT D
(This uses a “row subquery”.)

Why GROUP BY is Redundant

I solemnly promise …

… cross my heart and hope to die.

… never to use the word “relational” when
I mean SQL, …

The Relationlander’s Promise

* Some good database motherhood

* Some good ideas (at least one)

* Some bad ideas (e.g., objects)

* Lack of commonly agreed model

* Failure to embrace relations

But potentially well poised, if only...

Object Oriented Databases

A bringing together of objects and relations
Widely sought, because:

* Some Objectlanders want to be
able to do what Relationlanders
do with tables - specially ad hoc
queries and declarative constraints.

* Some Relationlanders want to do
some more complicated things that
require user-defined data types of
arbitrary complexity.

Rapprochement

Absolutely fundamental.

Terribly misunderstood.

Relationland’s “Great Encapsulator”.

Ref: "Relation-Valued Attributes, or Will the Real First Normal Form Please Stand Up?', in RDBW
89-91.

First Normal Form

<1> KILLED

CaesarCassius

HamletLaertes

PoloniusHamlet
LaertesHamlet
BrutusBrutus
CaesarBrutus
VictimKiller

Note : exactly ONE VALUE at
each row/column intersection

This domain is “supported” by the Relational Model of Data, as is every
domain you can possibly imagine!

WALK OUT OF any lecture that tells you that the Relational Model supports
only certain domains, such as numbers, character strings, dates and times.

Predicate: “Killer, a character in
Shakespeare, killed Victim, a character
in Shakespeare.”
Attribute names, KILLER and VICTIM,
represent the place-holders of the
predicate.
The relation name KILLED is the verb
of the predicate.
“Character in Shakespeare” is the
domain of KILLER and of VICTIM.

1NF – a Shakespearean Example

<2> KILLED

CaesarCassius

HamletLaertes
Laertes PoloniusHamlet
Caesar BrutusBrutus

VictimKiller

“Caesar Brutus” IS NOT EXACTLY ONE VALUE.

Not in 1NF

But this isn’t even a relation!

<3> KILLED

Domain of Victim is now
“set of characters in Shakespeare”

Getting from <1> to <3> needs a “grouping” operation.

Getting from <3> to <1> needs an “ungrouping” operation.

{ }Polonius
{ Caesar }Cassius

{ Hamlet }Laertes
{ Laertes, Polonius }Hamlet
{ Caesar, Brutus }Brutus

VictimKiller

It seems that to be in 1NF is nothing more (or less) than to be a relation.

In 1NF Again

An atomic value: “cannot be decomposed into smaller
pieces by the DBMS...” (E.F.Codd)

Note : “by the DBMS” (and wonder what that means)

Relational operators work with relations.
They don’t know anything about the domains!

Expressions such as KILLER = ‘Brutus’ are qualifiers for relational
operators, and their evaluation belongs with domains, not the

relational operators.

Why 1NF Encapsulates

Codd’s motivation : Simplicity
to make corporate databases readily approachable

by a large and diverse community of users.

But some things just are complex
no getting away from it.

Besides, atoms are notoriously splittable after all.

Encapsulation
helps us to get to grips with complexity.

Encapsulation makes molecules behave like atoms.

A Note on Atomicity

BUILDING

Predicate : “Picture is a picture of building Name”

Domain of Name is “name of building”

Domain of Picture is “picture of building”

etc.
< picture >Durham Ox
< picture >Reims Cathedral

PictureName

Pictures of buildings :

Embracing Complexity

BUILDING

Predicate :
“Pixel number Pixel# of the picture of building Name is

coloured Colour, Brightness brightly.”

etc.

somewhatwhite1Reims Cathedral

brown
blue
red

Colour

33
9

42
Pixel#

maximallyDurham Ox
a littleReims Cathedral
veryReims Cathedral

BrightnessName

Pictures of buildings :

But with “Atomic” Domains Only

Predicate:
Info is information about bird BirdName, and
Pic is a picture of BirdName, and
Video is a video of BirdName, and
Song is BirdName’s song, and
Migr is BirdName’s migration route.

Pic Video SongInfo

Sparrow

Thrush

Robin
MigrBirdName

A Multimedium Database

Some attempts at rapprochement treat rows
as objects, and sets of rows as sets of

objects.

This approach is doomed

The relational equivalent of object
class is DOMAIN, not relation !

A New Fatal Flaw Has Loomed

All logical
differences are
big differences

(Wittgenstein)

All logical mistakes are big mistakes
(Darwen’s corollary)

All non-logical (psychological) differences are
small differences

(Darwen’s conjecture)

A Guiding Light

1 will faithfully embrace the Relational Model of
Data.

- NO EXTENSION
- NO PERVERSIONS
- NO SUBSUMPTIONS

2 - will support user-defined domains and user-
defined functions of arbitrary complexity.

3 will allow SQL to be implemented in it for
temporary use (until SQL finally expires).

4 will provide unprecedented chivalry.

5 will be named....

()

The Dream Database Language

D

The Dream is
coming true!

Visit http://www.alphora.com

to find about Alphora’s “Dataphor” and database
language D4

D4 is a faithful implementation of The Third Manifesto
and therefore possibly the first commercially available

implementation of E.F. Codd’s

Relational Model of Data (1970)

Late Breaking News

Relationnone, and really wanted!

none (& don’t want!)Distinguished parameter

Polymorphism (thanks?)Polymorphism

Inheritance (thanks?)Inheritance

Operator invocationMessage

Function, ProcedureMethod

none (but we have keys)Object identifier

(Variable)Object

Domain (now Type)Class

RelationlandObjectland

Terminological Rapprochement

variable variable
name

Object

oid

“state” (i.e., a value)

name

namename

variablevariable

NOT WHAT WE WANT !
(soon leads to spaghetti)

Object DB Structure

relation variable
name

value
(a relation)

What we want instead!
(cannot make spaghetti)

relation variable
name

value

. . .

Relational DB Structure

Some important principles that we have
become particularly conscious of, for
various reasons.

Some have always been with us.

Some arise from a retrospective look at
our manifesto.

Some may even be said to have informed
our manifesto.

Some Guiding Principles

Principle #1
(our motto)

“All logical differences are big differences”
(Wittgenstein)

So all logical mistakes are big ones!

And we think all non-logical differences are
small ones. In the database context, at least.

Logical Differences

Principle #2

“We retain and embrace a clear
distinction between values and

variables”

(Object Orientation seems to have blurred
this distinction.)

Values and Variables

Principle #3
Data types and The Relational Model

are orthogonal to each other.
Corollary :

The Relational Model has no jurisdiction
concerning which data types a relational

system should support.

We reject absolute atomicity in favour of our
clarified definition of 1NF.

Data Types and Relations

Principle #4
There’s no such thing as absolute
identity.

Identity means understanding and agreeing
some sense in which “this is the same value
as that” can be interpreted. Belonging to the

same data type is that sense.

So values don’t need to carry “oids” around
with them and, in fact, they don’t !

Absolute Identity

Principle #5

Types are to tables as nouns are to
sentences!

So we can’t accept the equation “object class
= relation” that some ORDBMSs

are attempting to embrace.

“object class = domain” works fine.

Types are Not Tables

Questioning Principle #5 some have
asked :

“But aren’t domains predicates, too?”
meaning “aren’t they therefore relations,

too?”

Well, yes E.g. “i is an integer”

But in that case, what is the domain of i ?

Domains as Predicates

Principle #6

We retain a strong, clear distinction
between model and implementation.

So, we will not define our abstract
machine in terms of what the system

“really does”.

Model and Implementation

Corollary

A database is an account of some
enterprise, not a model of it.

In a relational database, the account is
in the form of tuples, each of which is to

be interpreted as some statement of
belief. Under this interpretation, the

system is able to derive certain other,
non-stated beliefs when asked to do so.

A Database is Not a Model

Principle #7
“Conceptual integrity is the most important

property of a software product”
(Fred Brooks, 1975)

Of course, you must have concepts before
you can be true to any. These had better
be:

a.few
b.agreeable to those invited to

share them

Conceptual Integrity

Reims
Cathedral

Principle #7 (bis)
“This above all: to thine own self be true,
And it must follow, as the night the day,

Thou canst not then be false to any
user.”

(from Polonius’s advice to D, by WS with HD)

Conceptual Integrity

The End

