
Introduction to ebXML

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. What is ebXML?.. 4
3. Architecture ... 7
4. Designing the system: Business Processes 10
5. CPPs and CPAs.. 15
6. Using the registry... 24
7. The ebXML Message Service.. 27
8. Summary and Resources... 32

Introduction to ebXML Page 1 of 34

Section 1. About this tutorial

Should I take this tutorial?

This tutorial is for developers who want to get a feel for the overall architecture and use
of electronic business XML (ebMXL), but who may not know where to start. It is also for
developers who have a general understanding of ebXML, but who want to start building
ebXML-related applications and need to understand how all of the pieces fit together.

Developers must have at least a basic understanding of XML and of XML validation
using schemas and/or DTDs. For basic XML information, see the Introduction to XML
tutorial. Other resources can be found in the Resources on page 32 section at the end of
the tutorial.

No programming experience is required.

What is this tutorial about?

Whereas Electronic Data Interchange (EDI) for years has provided a usable but
expensive way for companies to exchange information in an automated manner,
ebXML now provides a means for companies to integrate their processes much more
easily. Based on XML, it provides a methodology for businesses to determine what
information they should exchange and how, as well as a set of specifications to allow
automation of the process.

Before you can even consider building an ebXML-related application, you must
understand what the pieces are and how they fit together.

This tutorial begins with a look at how businesses can use ebXML and a general
overview of how all of the pieces fit together to form a complete architecture. The
tutorial next discusses analysis and the process of creating Business Process
Specifications and Business Documents. It then moves on to Collaboration Protocol
Profiles (CPPs) and Collaboration Protocol Agreements (CPAs), and a discussion of
ebXML Registries (where all of this information is stored). Finally, it finishes up with a
look at the actual messages that are sent between Trading Partners, and how they're
constructed.

It's important to note that at the time of this writing, ebXML implementations have never
been completed because parts of the specifications are not yet complete. The existing
implementations use the pieces that are available and fill in the holes as necessary.

Tools

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 34 Introduction to ebXML

http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument

You will perform no actual programming in the course of this tutorial, so no particular
software packages are required.

However, during the tutorial, you will have the option of viewing the OASIS ebXML v2
Registry Reference Implementation. This is not required, but should you choose to do
so, you must have Java 1.4 installed in your machine. You can download Java 1.4 from
http://java.sun.com/j2se/1.4/download.html.

About the author

Nicholas Chase has been involved in Web site development for companies such as
Lucent Technologies, Sun Microsystems, Oracle, and the Tampa Bay Buccaneers.
Nick has been a high school physics teacher, a low-level radioactive waste facility
manager, an online science fiction magazine editor, a multimedia engineer, and an
Oracle instructor. More recently, he was the Chief Technology Officer of Site Dynamics
Interactive Communications in Clearwater, Fla., and is the author of three books on
Web development, including Java and XML from Scratch (Que). He loves to hear from
readers and can be reached at nicholas@nicholaschase.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 3 of 34

http://java.sun.com/j2se/1.4/download.html
mailto:nicholas@nicholaschase.com

Section 2. What is ebXML?

Why businesses talk to each other

Businesses inevitably talk to each other in a variety of ways. Often their only contact
with other businesses (either as suppliers or as customers) is through forms sent in the
mail or phone calls to a helpful clerk. Performing these communications electronically
eliminates the need for paper, saves man-hours, and streamlines the process, shaving
significant time off of otherwise manual processes.

The functionality to communicate this way already exists, of course. Many large
companies communicate automatically through EDI, which allows two companies to
communicate using predetermined signals.

The trouble with EDI is that it's expensive. Originally created for the mainframe world,
EDI requires skills that are rare, and it's generally impossible for all but the largest
companies to consider using it.

XML provides a solution to that problem.

Using XML to communicate

Part of the answer to the cost and maintenance issues of EDI is to use XML. XML has
the following advantages:

• It is simpler than EDI.

• It has many more uses than just data exchange between companies.

• It is fairly easy to find developers who are familiar with it.

• It is a platform-neutral language.

• You can build applications to read and send XML virtually anywhere.

However, this doesn't solve the main problem for which EDI was created: Web
Services can be built to communicate across multiple applications and vendors, but
what do they say and how do they say it?

ebXML to the rescue

This is where ebXML comes in.

Unlike many other XML derivatives, such as MathML or Scalable Vector Graphics
(SVG), ebXML doesn't simply define an XML grammar and vocabulary. Instead, it
defines not only an entire architecture, but also a new way of thinking about business,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 34 Introduction to ebXML

and more importantly, documenting it.

ebXML consists of a group of related specifications that are maintained by the United
Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT, the
overseers of EDI) and OASIS.

You can define how companies conduct business using a specific vocabulary in
Business Process Specifications. Predefined documents are built from core
components. Messages are sent using standard formats and protocols. And just about
everything is stored in ebXML registries, where companies can find the information and
structures they need rather than reinventing the wheel.

Finding Trading Partners

Registries also hold another important item: information on potential Trading Partners.

In ebXML, companies conduct business through the exchange of documents, which
can take the form of purchase orders, administrative information, or even the goods
themselves. For example, a company looking for a news clipping service might send a
purchase order to a supplier and receive a list of news items in response.

Registries hold information on potential Trading Partners in the form of Collaboration
Protocol Profiles (CPPs). CPPs are XML documents that use a specific vocabulary to
identify business processes that a company is willing and able to take part in, the roles
that it can play, and technical information about its capabilities. For example, searching
the CPPs in an ebXML registry can uncover a business that can provide news clippings
through an HTTP interface and that is willing to accept purchase orders online.

Reaching agreement

Finding a Trading Partner is just the beginning. Next, you must configure the two
systems to work together to complete the appropriate transactions. Fortunately, you
can easily accomplish this through the use of a Collaboration Protocol Agreement
(CPA). A CPA is composed from the CPPs of each trading partner, specifying what
collaborations take place and the specifics about them.

These specifics may include information on technical issues such as protocols to be
used, or they might include requirements such as acknowledgment and verification.

Once the companies have generated and agreed to the CPA, this single document can
be used to configure the application, or Business Service Interface, on both sides. In
this way, both Trading Partners are working from the same information, and there is no
confusion about who should be doing what.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 5 of 34

Advanced ebXML features

To cover all of the aspects of ebXML would take a large book. Some features that are
beyond the scope of this tutorial include:

• Legal bindings: When the specifications are complete, ebXML will include the ability
to specify transactions that are legally binding on one or both parties. Naturally,
messages must be tamper-proof and signed.

• Non-repudiation: If non-repudiation is required, copies of various pieces of
information must be kept to avoid situations in which one partner argues that they
never agreed to a particular thing.

• Security: As you might imagine, performing critical business functions over the
Internet using Web Services brings up a host of issues. ebXML includes a technical
report, Technical Architecture Risk Assessment v 1.0, which covers various relevant
issues. (See Resources on page 32).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 34 Introduction to ebXML

Section 3. Architecture

System overview

Now that you've got a basic idea of how ebXML works, you can learn about the actual
architecture, which involves a number of overlapping technologies working together.

Let's start by looking at the overall process. Then you can look at Business Processes,
and at some of the individual technologies behind an ebXML implementation.

On the surface, using an ebXML system is straightforward. It involves the following
steps:

1. Search for a Trading Partner.

2. Create a CPA.

3. Negotiate any issues regarding the CPA.

4. Configure both Business System Interfaces using the CPA.

5. Begin performing Business Processes.

Business Processes and Business Documents

Both Business Processes and Business Documents are designed and documented
prior to their use, and are usually composed from existing components and processes.

For example, Business Processes may be composed from existing Core Processes
documented in a business library or other registry. Business Documents are normally
composed from existing Core Components in a registry. Both are documented using
the Business Process Specification Schema (BPSS) and stored in an ebXML registry
so that they can be referenced from CPPs, CPAs, and other structures.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 7 of 34

The Business Process Specification Schema

Business models define how business processes are discovered, defined, and
documented. In ebXML, you can accomplish this by using the Unified Modeling
Methodology (UMM). UMM is not required. Just as an XML Schema or DTD provides a
vocabulary for data within an XML document, the UMM provides a common language
that can be used by those individuals who define business processes.

The BPSS is a subset of the UMM. The BPSS is typically expressed in the Unified
Modeling Language (UML) and translated to a XML Schema or DTD using production
rules. In this way, the common language that the UMM uses to think about and discuss
business processes becomes a common language through which you can describe
processes using XML.

As seen in the Business Processes and Business Documents on page 7 , the BPSS is
used to define both the Business Processes and the Business Documents they involve.
This tutorial discusses the BPSS in the next section, Designing the system: Business
Processes on page 10 .

The Registry Information Model

Once Business Processes and Business Documents are defined, you can store them
in an ebXML registry along with CPPs and CPAs, classifications, and other objects.
One goal of your ebXML project is to define a structure that organizes all this disparate
information that is in one place. That structure is the Registry Information Model.

It's important to note that an ebXML registry does not store actual documents or
specifications, but rather metadata about documents. It consists of a collection of
RegistryEntry objects of various types, including Organizations, Packages,
Slots (of information about an object), and Associations between objects.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 34 Introduction to ebXML

You can query the registry programmatically, and you can update it so that companies
can add information.

Message structure

One important goal of the ebXML project is to use an open message format that can
accommodate extensions later. The ebXML Message Service (ebMS) is based on the
SOAP with Attachments specification. Messages contain a single Message Header.
The Message Header consists of a complete SOAP message, and one or more
payload attachments. These payload attachments are the actual documents being
transferred. The SOAP message simply contains information about the message, such
as the ConversationId.

This message is packaged in a Document Envelope, which is then packaged in a
Transport Envelope. Each of these envelopes contains an appropriate addressing
scheme, as seen in the following figure.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 9 of 34

Section 4. Designing the system: Business Processes

Analyzing your business

To effectively implement an ebXML system, you need to understand just what you're
trying to accomplish. It might be something as simple as finding a supplier for
cabbages, but in most cases companies execute business functions in a way that is
similar to the way they currently work.

The difference is that now they need to express those business processes in a
standard way: a Business Process Specification.

You can go about this in several ways. You might choose to simply jump in and start
creating the Business Process Specification, but unless the process is ludicrously
simple, that's usually a recipe for disaster. If you do use a methodology of some sort,
the ebXML architecture says it should be the UMM. Then, all parties can communicate
effectively about what's discovered and defined. (The UMM is a major topic in itself,
well beyond the scope of this tutorial. See Resources on page 32 for more information on
the UMM.)

The goal of this analysis is to define Business Processes and Business Information.
Business Processes are something that a business does. Business Information is
information that a business uses to do the processes, normally expressed in the form
of Business Documents.

Business Processes

A Business Process is something that a business does, such as buying hot dog buns
or selling a service. It involves the exchange of information between two or more
Trading Partners in some predictable way.

For example, Bamboo Ltd. wants to buy clipping services from Custom News Inc.
Doing that involves several steps. Assume that all of the technical details have already
been worked out. First, Bamboo has to choose the categories in which it wants
clippings; then it needs to place the order. Once it receives the clippings, Bamboo
needs to offer payment information (or perhaps it must offer payment information
before receiving the clippings). These decisions are part of the analysis process.

Building a Business Process is a bit like building a machine: Each part is a Business
Collaboration that works in concert with all of the other parts.

Business Collaborations

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 34 Introduction to ebXML

A Business Collaboration is a choreographed set of Business Transaction Activities, in
which two Trading Partners exchange documents.

Several variations on Business Collaborations exist. The most common one is a Binary
Collaboration, in which two partners exchange documents. A Multiparty Collaboration
takes place when information is exchanged between more than two parties...or does it?
Multiparty Collaborations are actually choreographed Binary Collaborations. At all times
information is flowing between two and only two parties, though the same information
may be sent to different parties in separate Binary Collaborations.

Business Collaborations can also be nested, in that a Business Transaction Activity
may also be a Business Collaboration. For example, the process of choosing
categories for news clippings might include several steps involving a request to a third
party to get a list of available categories. This collaboration (like that between Bamboo
Ltd. and the category provider) is a Business Collaboration that acts as a building block
to build the main collaboration.

At its lowest level, a Business Collaboration can be broken down into Business
Transactions.

Business Transactions

A Business Transaction is the atomic level of work in a Business Process. It either
succeeds or fails completely.

Business Transactions are transactions in which Trading Partners actually transfer
Business Documents. In a Business Transaction, the requesting party, or requestor,
sends the request to the responding party, or responder. This request may be an actual
request, in which case the responder then sends back a response -- or it may be a
simple notification, in which case the responder simply accepts the information.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 11 of 34

Business Transactions and control

The requestor sends the request, and control of the transaction passes to the
responder. In this case, the responder sends a receipt acknowledgment, then an
acceptance acknowledgment, and then the response itself. At this point, control passes
back to the requestor, which sends back a receipt and acceptance acknowledgment.

Note that the requirement of receipts and acceptances is defined at the transactional
level; this affects whether and when control passes to each party. For example, in the
above case, control stays with the responder until it sends the required response. Then
control passes back to the requestor. If neither a response nor an acceptance
acknowledgment are required, control is passed back to the requestor as soon as the
responder sends the receipt acknowledgment.

Choreography and states

As mentioned in Business Collaborations on page 10 , a Business Collaboration
consists of choreographed Business Transactions. That choreography is expressed in
terms of states and the transitions between them.

In fact, a Business Activity is known as an abstract state, with Business Collaborations
and Business Transaction Activities known as concrete states. Auxiliary states include
start, fork, synchronization, and completion (which takes the form of either success or
failure).

As the collaboration proceeds, it transitions from one state to the next. In some cases
in which a particular requirement exists (such as document receipt or validation), a
guard gates the transition to control whether or not it takes place.

All of the logic for state management is built as part of the Business Service Interface
portion of the application.

Business Documents

So where do these Business Documents being transferred come from?

Business Documents are composed of Business Information Objects, or smaller
chunks of information that have previously been identified. These chunks, or
components, don't carry any information, of course. They are merely structures, such
as an XML Schema or a DTD, that define information and how it must be presented.
The end result is a predictable structure into which information is placed, so that the
receiver of the final document can interpret it to extract the information.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 34 Introduction to ebXML

One of the goals of ebXML is to create a set of Core Components that will be stored in
a Core Library and be available for the building of Business Documents. As of this
writing, the Core Components were not yet complete. It's likely that early adopters of
ebXML will find themselves in a situation where the components they need for their
Business Documents are not available in any library.

Reusable components

Both Business Processes and Business Documents are always built out of existing
components. So what happens if those components are not available?

The first step in building documents is to determine the required attributes and search
the registry for documents that already contain them. If the Document contains
everything that is needed, simply use it rather than creating a new one. If not, create a
new component or add attributes to an existing Document and register the new or
changed information with the registry. Use the newly registered components to create
the new Document.

Register the completed Document structure with the registry so that it can be used.

Business Processes are built the same way, with Core Processes stored in the registry.

A sample Business Process Specification

The end result of all of this analysis is a Business Process Specification. Here is a
simple example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ProcessSpecification SYSTEM "ebXMLProcessSpecification-v1.00.dtd">
<ProcessSpecification name="NewsClips" version="1.2" uuid="[1234-5678]">

<BusinessDocument name="Clipping Request"/>
<BusinessDocument name="ClipList"/>
<Package name="Ordering">

<BinaryCollaboration name="Request Clippings">
<InitiatingRole name="requestor"/>
<RespondingRole name="provider"/>
<BusinessTransactionActivity name="Clipping Request"

businessTransaction="Clipping Request"
fromAuthorizedRole="requestor" toAuthorizedRole="provider"/>

</BinaryCollaboration>
<BinaryCollaboration name="Fulfillment" timeToPerform="P1D">

<Documentation>
timeToPerform = Period: 1 day from start of transaction

</Documentation>
<InitiatingRole name="buyer"/>
<RespondingRole name="seller"/>
<BusinessTransactionActivity name="Create Order"

businessTransaction="Create Order" fromAuthorizedRole="buyer"
toAuthorizedRole="seller"/>

<BusinessTransactionActivity name="Notify creation"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 13 of 34

businessTransaction="Notify of information creation"
fromAuthorizedRole="buyer" toAuthorizedRole="seller"/>

<Start toBusinessState="Create Order"/>
<Transition fromBusinessState="Create Order"

toBusinessState="Notify creation"/>
<Success fromBusinessState="Notify creation"

conditionGuard="Success"/>
<Failure fromBusinessState="Notify creation"

conditionGuard="BusinessFailure"/>
</BinaryCollaboration>
<BusinessTransaction name="Clipping Request">

<RequestingBusinessActivity name="">
<DocumentEnvelope isPositiveResponse="true"

businessDocument="Clipping Request"/>
</RequestingBusinessActivity>
<RespondingBusinessActivity name="">

<DocumentEnvelope isPositiveResponse="true"
businessDocument="Clipping List"/>

</RespondingBusinessActivity>
</BusinessTransaction>
<BusinessTransaction name="Create Order">

<RequestingBusinessActivity name="" isNonRepudiationRequired="true"
timeToAcknowledgeReceipt="P1D"
timeToAcknowledgeAcceptance="P1D">

<DocumentEnvelope isPositiveResponse="true"
businessDocument="Purchase Order"/>

</RequestingBusinessActivity>
<RespondingBusinessActivity name="" isNonRepudiationRequired="true"

timeToAcknowledgeReceipt="P1D">
<DocumentEnvelope isPositiveResponse="true"

businessDocument="PO Acknowledgement"/>
</RespondingBusinessActivity>

</BusinessTransaction>
<BusinessTransaction name="Notify Creation">

<RequestingBusinessActivity name="">
<DocumentEnvelope isPositiveResponse="true"

businessDocument="ClipList"/>
</RequestingBusinessActivity>
<RespondingBusinessActivity name="" timeToAcknowledgeReceipt="P1D"/>

</BusinessTransaction>
</Package>

</ProcessSpecification>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 34 Introduction to ebXML

Section 5. CPPs and CPAs

Collaboration Protocol Profiles (CPPs)

Communicating with a Trading Partner requires understanding what they can and
cannot do. The CPP identifies the Business Processes in which an organization takes
part, and the role (for example, buyer or insurer) they play within that collaboration.
It also defines the delivery channels and transport protocols (such as HTTP) that the
organization supports.

Depending on the level of security desired, this document may also be digitally signed.

This document is stored in an ebXML Registry with a Globally Unique Identifier (GUID)
that becomes part of the metadata for the entry. Note that the registry does not and
cannot insert the GUID into the document, because that would invalidate any
signatures on the document.

The information within the CPP is available to be searched on, so a potential Trading
Partner can determine whether the organization has the capabilities to do business.

Overall structure of a CPP

The structure of a CPP consists of a root CollaborationProtocolProfile
element with PartyInfo, Packaging, Signature, and Comment elements:

<CollaborationProtocolProfile
xmlns="http://www.ebxml.org/namespaces/tradePartner"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="1.1">

<PartyInfo>
...
<!--REQUIRED, Repeatable-->
...

</PartyInfo>
<Packaging id="ID">

...
<!--REQUIRED-->
...

<Packaging>
<ds:Signature>

...
<!--OPTIONAL-->
...

</ds:Signature>
<Comment>

...
<!-- OPTIONAL -->
...

</Comment>
</CollaborationProtocolProfile>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 15 of 34

The root element, CollaborationProtocolProfile, requires three namespace
declarations:

• http://www.ebxml.org/namespaces/tradePartner is the default
namespace.

• http://www.w3.org/2000/09/xmldsig#, is the namespace for XML Digital
Signature, and is included to allow signing of CPPs.

• http://www.w3.org/1999/xlink is the XLink namespace, which allows the
CPP to reference external information.

As for the content of the document itself, only the PartyInfo and Packaging
elements are required.

PartyInfo

The PartyInfo element provides information about the organization. Multiple
PartyInfo elements can be added to include information about different parts of an
organization.

The PartyInfo element includes:

• One or more PartyId elements. These elements provide a logical identifier for the
organization, such as a DUNS number.

• One PartyRef element. This element points to an external resource with more
information about the organization.

• One or more CollaborationRole elements. These elements are the heart of the
CPP, providing information on the Business Processes in which the party engages,
and the roles it plays within those processes. The CollaborationRole element
directly references a Business Process Specification stored in the registry.

• One or more Certificate elements. These elements identify the party's security
certificates.

• One or more DeliveryChannel elements. These elements define the ways in
which the party can receive messages, including references to both a document
exchange, or message protocol, and a transport protocol layer described below.

• One or more Transport elements. These elements provide specifics for the
transport layers referenced in the DeliveryChannel elements. Transport layers
may include HTTP, SMTP, or other transport protocols.

• One or more DocExchange elements. These elements provide specifics for the
document exchanges referenced in the DeliveryChannel elements. The
document exchange represents the messaging protocol, such as ebMS.

Each of these elements has its own child elements, as seen in the sample CPP
document.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 34 Introduction to ebXML

Packaging

The Packaging element provides information about the way in which messages are
actually constructed. Messages are processed as SOAP Messages with Attachments,
and the Packaging element provides information on how these messages are
organized.

The Packaging element has three potential child elements:

• The ProcessingCapabilities element is an empty element with two required
attributes, generate and parse, which indicate whether the system is capable of
creating or reading messages.

• The SimplePart element defines message pieces that consist of a certain
Multipurpose Internet Mail Extenstions (MIME) type. Pieces are identified so that
they can be referenced within the CompositeList element.

• The CompositeList element provides information about composites or
encapsulations of SimpleParts. This element is optional, and will not appear if
parts are sent individually.

These elements are seen in the sample CPP that follows.

A sample CPP

This sample from the ebXML site shows the various parts of a complete CPP:

<?xml version="1.0" encoding="UTF-8" ?>
<tp:CollaborationProtocolProfile

xmlns:tp="http://www.ebxml.org/namespaces/tradePartner"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xsi:schemaLocation="http://www.ebxml.org/namespaces/tradePartner

http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd"
tp:version="1.1">

<tp:PartyInfo>
<tp:PartyId tp:type="DUNS">123456789</tp:PartyId>
<tp:PartyRef tp:href="http://example.com/about.html" />
<tp:CollaborationRole tp:id="N00">

<tp:ProcessSpecification tp:version="1.0" tp:name="buySell"
xlink:type="simple"
xlink:href="http://www.ebxml.org/processes/buySell.xml"/>

<tp:Role tp:name="buyer" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#buyer"/>

<tp:CertificateRef tp:certId="N03" />
<tp:ServiceBinding tp:channelId="N04" tp:packageId="N0402">
<tp:Service tp:type="uriReference"

>uri:example.com/services/buyerService</tp:Service>
<tp:Override tp:action="orderConfirm" tp:channelId="N07"

tp:packageId="N0402" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#orderConfirm"/>

</tp:ServiceBinding>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 17 of 34

</tp:CollaborationRole>
<tp:Certificate tp:certId="N03">
<ds:KeyInfo />

</tp:Certificate>
<tp:DeliveryChannel tp:channelId="N04" tp:transportId="N05"

tp:docExchangeId="N06">
<tp:Characteristics tp:syncReplyMode="none"

tp:nonrepudiationOfOrigin="true"
tp:nonrepudiationOfReceipt="false"
tp:secureTransport="true" tp:confidentiality="true"
tp:authenticated="true" tp:authorized="false" />

</tp:DeliveryChannel>
<tp:DeliveryChannel tp:channelId="N07" tp:transportId="N08"

tp:docExchangeId="N06">
<tp:Characteristics tp:syncReplyMode="none"

tp:nonrepudiationOfOrigin="true" tp:confidentiality="true"
tp:nonrepudiationOfReceipt="false"
tp:secureTransport="false" tp:authenticated="true"
tp:authorized="false" />

</tp:DeliveryChannel>
<tp:Transport tp:transportId="N05">

<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>
<tp:ReceivingProtocol tp:version="1.1">HTTP</tp:ReceivingProtocol>
<tp:Endpoint tp:uri="https://www.example.com/servlets/ebxmlhandler"

tp:type="allPurpose" />
<tp:TransportSecurity>

<tp:Protocol tp:version="3.0">SSL</tp:Protocol>
<tp:CertificateRef tp:certId="N03" />

</tp:TransportSecurity>
</tp:Transport>
<tp:Transport tp:transportId="N08">

<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>
<tp:ReceivingProtocol tp:version="1.1">SMTP</tp:ReceivingProtocol>
<tp:Endpoint tp:uri="mailto:ebxmlhandler@example.com"

tp:type="allPurpose" />
</tp:Transport>
<tp:DocExchange tp:docExchangeId="N06">

<tp:ebXMLBinding tp:version="0.98b">
<tp:ReliableMessaging tp:deliverySemantics="OnceAndOnlyOnce"

tp:idempotency="true"
tp:messageOrderSemantics="Guaranteed">

<tp:Retries>5</tp:Retries>
<tp:RetryInterval>30</tp:RetryInterval>
<tp:PersistDuration>P1D</tp:PersistDuration>

</tp:ReliableMessaging>
<tp:NonRepudiation>

<tp:Protocol
>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

<tp:HashFunction
>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>
<tp:SignatureAlgorithm

>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>
<tp:CertificateRef tp:certId="N03" />

</tp:NonRepudiation>
<tp:DigitalEnvelope>

<tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>
<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:CertificateRef tp:certId="N03" />
</tp:DigitalEnvelope>

</tp:ebXMLBinding>
</tp:DocExchange>

</tp:PartyInfo>
<tp:Packaging tp:id="N0402">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true" />

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 34 Introduction to ebXML

<tp:SimplePart tp:id="N40" tp:mimetype="text/xml">
<tp:NamespaceSupported
tp:location=
"http://ebxml.org/project_teams/transport/messageService.xsd"
tp:version="0.98b"

>http://www.ebxml.org/namespaces/messageService</tp:NamespaceSupported>
<tp:NamespaceSupported tp:location=
"http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd"
tp:version="1.0"

>http://www.w3.org/2000/09/xmldsig</tp:NamespaceSupported>
</tp:SimplePart>
<tp:SimplePart tp:id="N41" tp:mimetype="text/xml">

<tp:NamespaceSupported tp:version="1.0"
tp:location="http://ebxml.org/processes/buysell.xsd"

>http://ebxml.org/processes/buysell.xsd</tp:NamespaceSupported>
</tp:SimplePart>
<tp:CompositeList>

<tp:Composite tp:id="N42" tp:mimetype="multipart/related"
tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="N40" />
<tp:Constituent tp:idref="N41" />

</tp:Composite>
</tp:CompositeList>

</tp:Packaging>
<tp:Comment tp:xml_lang="en-us">buy/sell agreement between example.com and

contrived-example.com</tp:Comment>
</tp:CollaborationProtocolProfile>

Collaboration Protocol Agreements (CPAs)

The CPA is, in many ways, simply the intersection of two CPPs. For example, if one
partner agrees to act as buyer and the other as seller, their roles will mesh like gears.
The only remaining concerns involve ironing out issues such as packaging and other
details.

Once both sides have reached agreement, they each take an electronic copy of the
same CPA and use it to configure their systems. The CPA may also be added to the
registry for reference, but this is not a requirement.

Overall structure of a CPA

The structure of the CPA is similar to that of the CPP:

<CollaborationProtocolAgreement
xmlns="http://www.ebxml.org/namespaces/tradePartner"
xmlns:ds = "http://www.w3.org/2000/09/xmldsig#"
xmlns:xlink = "http://www.w3.org/1999/xlink"
cpaid="http://www.example.com/cpas/clipCPA"
version="1.7">

<Status value = "proposed"/>
<Start>1988-04-07T18:39:09</Start>
<End>1990-04-07T18:40:00</End>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 19 of 34

<ConversationConstraints invocationLimit = "250"
concurrentConversations = "5"/>

<PartyInfo>
...
<!--REQUIRED, repeatable-->
...

</PartyInfo>
<PartyInfo>

...
<!--REQUIRED, repeatable-->
...

</PartyInfo>
<Packaging id="N20">

...
<!--REQUIRED, repeatable-->
...

</Packaging>
<ds:Signature>

<!--OPTIONAL-->
</ds:Signature>
<Comment xml:lang="en-gb">

<!--OPTIONAL-->
</Comment>

</CollaborationProtocolAgreement>

Like the CPP, the CPA defines namespaces on its root element (in this case the
CollaborationProtocolAgreement) and a version to distinguish any subsequent
changes. The CPA also includes a cpaid attribute that both parties use. The
CPP/CPA specification recommends that this attribute consist of a unique URI value.

The PartyInfo, Packaging, Signature, and Comment elements have the same
meaning they have for a CPP, except that PartyInfo elements are included for both
parties involved in the agreement.

Typically, one party generates a CPA and offers it to the other party for approval, so
the Status element shows where the document is in this process. The possible values
are proposed, agreed, and signed.

The Start and End elements represent, in Coordinated Universal Time, the beginning
and end of the period during which this CPA is active. (Note that if an
invocationLimit value is given on the ConversationConstraints element, the
CPA may expire before the end date.)

Finally, the optional CoversationConstraints element defines the finite number of
conversations that may be held under this CPA, and the number that may be held
concurrently.

A sample CPA

This example from the ebXML site builds on the previous CPP:

<?xml version="1.0" ?>
<tp:CollaborationProtocolAgreement

xmlns:tp="http://www.ebxml.org/namespaces/tradePartner"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 34 Introduction to ebXML

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.ebxml.org/namespaces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
tp:cpaid="http://www.example.com/cpas/clipCPA"
tp:version="1.2">

<tp:Status tp:value="proposed" />
<tp:Start>2001-05-20T07:21:00Z</tp:Start>
<tp:End>2002-05-20T07:21:00Z</tp:End>
<tp:ConversationConstraints tp:invocationLimit="100"

tp:concurrentConversations="100"/>
<tp:PartyInfo>

<tp:PartyId tp:type="DUNS">123456789</tp:PartyId>
<tp:PartyRef xlink:href="http://example.com/about.html"/>
<tp:CollaborationRole tp:id="N00">

<tp:ProcessSpecification tp:version="1.0" tp:name="buySell"
xlink:type="simple"
xlink:href="http://www.ebxml.org/processes/buySell.xml"/>

<tp:Role tp:name="buyer" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#buyer"/>

<tp:CertificateRef tp:certId="N03" />
<tp:ServiceBinding tp:channelId="N04" tp:packageId="N0402">

<tp:Service tp:type="uriReference"
>uri:example.com/services/buyerService</tp:Service>

<tp:Override tp:action="orderConfirm" tp:channelId="N08"
tp:packageId="N0402" xlink:type="simple" xlink:href=
"http://ebxml.org/processes/buySell.xml#orderConfirm"/>

</tp:ServiceBinding>
</tp:CollaborationRole>
<tp:Certificate tp:certId="N03">

<ds:KeyInfo />
</tp:Certificate>
<tp:DeliveryChannel tp:channelId="N04" tp:transportId="N05"

tp:docExchangeId="N06">
<tp:Characteristics tp:syncReplyMode="none"

tp:nonrepudiationOfOrigin="true"
tp:nonrepudiationOfReceipt="false" tp:secureTransport="true"
tp:confidentiality="true" tp:authenticated="true"
tp:authorized="false" />

</tp:DeliveryChannel>
<tp:DeliveryChannel tp:channelId="N07" tp:transportId="N08"

tp:docExchangeId="N06">
<tp:Characteristics tp:syncReplyMode="none"

tp:nonrepudiationOfOrigin="true" tp:secureTransport="false"
tp:nonrepudiationOfReceipt="false" tp:confidentiality="true"
tp:authenticated="true" tp:authorized="false" />

</tp:DeliveryChannel>
<tp:Transport tp:transportId="N05">

<tp:SendingProtocol
tp:version="1.1">HTTP</tp:SendingProtocol>

<tp:ReceivingProtocol
tp:version="1.1">HTTP</tp:ReceivingProtocol>

<tp:Endpoint tp:type="allPurpose"
tp:uri="https://www.example.com/servlets/ebxmlhandler"/>

<tp:TransportSecurity>
<tp:Protocol tp:version="3.0">SSL</tp:Protocol>
<tp:CertificateRef tp:certId="N03" />

</tp:TransportSecurity>
</tp:Transport>
<tp:Transport tp:transportId="N18">

<tp:SendingProtocol
tp:version="1.1">HTTP</tp:SendingProtocol>

<tp:ReceivingProtocol

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 21 of 34

tp:version="1.1">SMTP</tp:ReceivingProtocol>
<tp:Endpoint tp:uri="mailto:ebxmlhandler@example.com"

tp:type="allPurpose" />
</tp:Transport>
<tp:DocExchange tp:docExchangeId="N06">

<tp:ebXMLBinding tp:version="0.98b">
<tp:ReliableMessaging tp:deliverySemantics="OnceAndOnlyOnce"

tp:idempotency="true"
tp:messageOrderSemantics="Guaranteed">
<tp:Retries>5</tp:Retries>
<tp:RetryInterval>30</tp:RetryInterval>
<tp:PersistDuration>P1D</tp:PersistDuration>

</tp:ReliableMessaging>
<tp:NonRepudiation>

<tp:Protocol
>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

<tp:HashFunction
>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>
<tp:SignatureAlgorithm

>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>
<tp:CertificateRef tp:certId="N03" />

</tp:NonRepudiation>
<tp:DigitalEnvelope>

<tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>
<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>
<tp:CertificateRef tp:certId="N03" />

</tp:DigitalEnvelope>
</tp:ebXMLBinding>

</tp:DocExchange>
</tp:PartyInfo>
<tp:PartyInfo>

<tp:PartyId tp:type="DUNS">987654321</tp:PartyId>
<tp:PartyRef xlink:type="simple"

xlink:href="http://contrived-example.com/about.html" />
<tp:CollaborationRole tp:id="N30">

<tp:ProcessSpecification tp:version="1.0" tp:name="buySell"
xlink:type="simple"
xlink:href="http://www.ebxml.org/processes/buySell.xml"/>

<tp:Role tp:name="seller" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#seller" />

<tp:CertificateRef tp:certId="N33" />
<tp:ServiceBinding tp:channelId="N34" tp:packageId="N0402">

<tp:Service tp:type="uriReference"
>uri:example.com/services/sellerService</tp:Service>

</tp:ServiceBinding>
</tp:CollaborationRole>
<tp:Certificate tp:certId="N33">

<ds:KeyInfo />
</tp:Certificate>
<tp:DeliveryChannel tp:channelId="N34" tp:transportId="N35"

tp:docExchangeId="N36">
<tp:Characteristics tp:nonrepudiationOfOrigin="true"

tp:nonrepudiationOfReceipt="false"
tp:secureTransport="true" tp:confidentiality="true"

tp:authenticated="true"
tp:authorized="false"/>

</tp:DeliveryChannel>
<tp:Transport tp:transportId="N35">

<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>
<tp:ReceivingProtocol tp:version="1.1">HTTP</tp:ReceivingProtocol>
<tp:Endpoint

tp:uri="https://www.contrived-example.com/servlets/ebxmlhandler"
tp:type="allPurpose" />

<tp:TransportSecurity>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 34 Introduction to ebXML

<tp:Protocol tp:version="3.0">SSL</tp:Protocol>
<tp:CertificateRef tp:certId="N33" />

</tp:TransportSecurity>
</tp:Transport>
<tp:DocExchange tp:docExchangeId="N36">

<tp:ebXMLBinding tp:version="0.98b">
<tp:ReliableMessaging tp:deliverySemantics="OnceAndOnlyOnce"

tp:idempotency="true"
tp:messageOrderSemantics="Guaranteed">

<tp:Retries>5</tp:Retries>
<tp:RetryInterval>30</tp:RetryInterval>
<tp:PersistDuration>P1D</tp:PersistDuration>

</tp:ReliableMessaging>
<tp:NonRepudiation>

<tp:Protocol
>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>

<tp:HashFunction
>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>
<tp:SignatureAlgorithm

>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>
<tp:CertificateRef tp:certId="N33" />

</tp:NonRepudiation>
<tp:DigitalEnvelope>

<tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>
<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>
<tp:CertificateRef tp:certId="N33" />

</tp:DigitalEnvelope>
</tp:ebXMLBinding>

</tp:DocExchange>
</tp:PartyInfo>
<tp:Packaging tp:id="N0402">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true" />
<tp:SimplePart tp:id="N40" tp:mimetype="text/xml">

<tp:NamespaceSupported
tp:location=
"http://ebxml.org/project_teams/transport/messageService.xsd"
tp:version="0.98b"

>http://www.ebxml.org/namespaces/messageService</tp:NamespaceSupported>
<tp:NamespaceSupported tp:version="1.0"

tp:location=
"http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd"
>http://www.w3.org/2000/09/xmldsig</tp:NamespaceSupported>

</tp:SimplePart>
<tp:Simplepart tp:id="N41" tp:mimetype="text/xml">

<tp:NamespaceSupported tp:version="1.0"
tp:location="http://ebxml.org/processes/buysell.xsd"

>http://ebxml.org/processes/buysell.xsd</tp:NamespaceSupported>
</tp:SimplePart>
<tp:CompositeList>

<tp:Composite tp:id="N42" tp:mimetype="multipart/related"
tp:mimeparameters="type=text/xml;">
<tp:Constituent tp:idref="N40" />
<tp:Constituent tp:idref="N41" />

</tp:Composite>
</tp:CompositeList>

</tp:Packaging>
<tp:Comment xml:lang="en-us">buy/sell agreement between example.com and

contrived-example.com</tp:Comment>
</tp:CollaborationProtocolAgreement>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 23 of 34

Section 6. Using the registry

ebXML Registries

A constant theme throughout this tutorial has been the use of an ebXML Registry to
store information for current and future use. When used with a repository, which
actually stores the referenced objects, an ebXML Registry provides a means for finding
organizations, CPPs, components, Business Process Specifications, classification
schemes, and even software or other objects.

At least one commercial ebXML Registry implementation is already on the market, but
most implementations are still fairly rudimentary. (See Resources on page 32 for a list of
registry implementations.) The Center for E-Commerce Infrastructure Development is
hosting the OASIS ebXML v2 Registry Reference Implementation. You can take a look
at it to get an idea of how registries work.

Open your browser and point it at
http://ebxmlrr.sourceforge.net/registryBrowser/registryBrowser.jnlp. Java Web Start
downloads the required components for the registry browser to your computer. (Java
1.4 is required to run the registry browser.)

Browsing the registry

Once Java Web Start downloads the software, a window opens to reveal the main
registry browser. This software is just an example; you can build your own using the
techniques briefly described in later panels.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 34 Introduction to ebXML

http://ebxmlrr.sourceforge.net/registryBrowser/registryBrowser.jnlp

Choose the CECID registry and click the binoculars in the upper left-hand corner to
execute a search. Because the object type is set to Organization, only organizations
are shown. (Unfortunately, the registry doesn't provide write access, and there isn't a
lot of data in it.)

Unless you enter specific parameters, the browser shows all information in the registry.
Choose different object types from the pulldown menu and look at the data returned.

Registry associations

Information in an ebXML Registry typically doesn't exist in a vacuum. Instead, objects
are associated with other objects in various ways. To view some of these relations,
right-click the entry for Sun Microsystems and select Browse RegistryObject. After a
few (or in some cases, quite a few) seconds, a second window appears. Right-click the
Sun Microsystems icon and select Show Related Objects.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 25 of 34

Notice that in addition to information about the organization itself, which you can get by
simply clicking the original entry, you can also see related objects, and how they're
related. For example, Classifications are entries unto themselves within the
registry, but they're also associated with other objects. Sun provides an ebXML
Registry Service, which a CPP would show.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 34 Introduction to ebXML

Section 7. The ebXML Message Service

The ebXML Message Service

Now that you've read about creating messages, it's time to find out about sending
them.

Considering that everything in ebXML rests on the concept of sending messages, the
ebMS is surprisingly simple. Each message consists of a number of MIME parts. The
first MIME part consists of a SOAP message that provides identification for the
message and other information crucial to its processing, and the rest consist of payload
parts that carry the documents being transferred.

The actual implementation is known as the Message Service Handler (MSH). It starts
with a layer on top of the actual application, called the Message Service Interface
(MSI). Once requests come through the MSI, the message header is created, including
information such as timestamps, digital signatures, and relevant information from the
CPA. The delivery module then packs up and prepares the message itself for delivery.

ebMS does not specify a particular protocol for delivering messages. Although HTTP is
the most common protocol, messages can be bound to virtually any protocol, such as
SMTP or IIOP.

The SOAP message

The message header consists of a SOAP message that contains the relevant
information about the message.

A SOAP message consists of an Envelope that carries a Header and a Body.
Extensions, like those for ebXML-specific information (such as a CPA identifier), can be
added to the header through the use of namespaces. For example:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd" >
<SOAP:Header xmlns:eb=

"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"
xsi:schemaLocation=

"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" >

...

</SOAP:Header>
<SOAP:Body xmlns:eb=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 27 of 34

xsi:schemaLocation=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" >

...

</SOAP:Body>
</SOAP:Envelope>

Notice that all of the necessary namespaces are defined, and that the schema location
is included so that the message can be validated at the receiving end, if necessary.

The SOAP header

Now add the ebXML-specific information:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">
<SOAP:Header xmlns:eb=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">
<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>
<eb:PartyId>urn:duns:987654321</eb:PartyId>

</eb:From>
<eb:To>

<eb:PartyId>urn:duns:123456789</eb:PartyId>
</eb:To>
<eb:CPAId>http://www.example.com/cpas/clipCPA</eb:CPAId>
<eb:ConversationId

>http://www.example.com/cpas/clipCPA@25430</eb:ConversationId>
<eb:Service>urn:services:ClipProcessing</eb:Service>
<eb:Action>OrderClips</eb:Action>
<eb:MessageData>

<eb:MessageId
>http://www.example.com/cpas/clipCPA@25430@648124</eb:MessageId>
<eb:Timestamp>2001-05-16T12:01:00</eb:Timestamp>

</eb:MessageData>
<eb:DuplicateElimination/>

</eb:MessageHeader>
</SOAP:Header>
<SOAP:Body xmlns:eb=

"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"
xsi:schemaLocation=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

...

</SOAP:Body>
</SOAP:Envelope>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 34 Introduction to ebXML

The SOAP header (as opposed to the ebMS header) holds information such as the
sender and receiver of the document, the CPA governing the message, and the
ConversationId.

The ConversationId lets the receiver know specifically what transaction or
collaboration this message is part of. Similarly, the MessageId identifies this particular
message. You can use MessageId with DuplicateElimination to make sure that
duplicates will be discarded if multiple copies of the message are sent (for example,
because acknowledgment was never received).

The SOAP header also holds information such as the Service and Action, which
help to identify the appropriate Business Process and the action to take within it.

The SOAP body

The Body part of the SOAP message provides the information on the actual document
being transferred.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">
<SOAP:Header xmlns:eb=

"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"
xsi:schemaLocation=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

...

</SOAP:Header>
<SOAP:Body xmlns:eb=

"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"
xsi:schemaLocation=

"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<eb:Manifest eb:version="2.0">
<eb:Reference xlink:href="cid:payload1" xlink:role="XLinkRole"

xlink:type="simple">
<eb:Description xml:lang="en-US">Clip List</eb:Description>

</eb:Reference>
</eb:Manifest>

</SOAP:Body>
</SOAP:Envelope>

The Manifest element can refer to documents that are located externally, such as
those on the Web, or (more commonly) documents that are part of the payload of the
ebMS message. Here it refers to the Content-Id MIME header.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 29 of 34

Pulling it together

The actual message is a series of MIME parts. MIME is best known for the MIME type,
which is carried by every single page, image, Flash movie, and any other item
transferred over the Web as any given type. This information helps an application
receiving data to know what to do with it. For example, a Web page has a MIME-type
of text/html, so the browser knows to render it as HTML. A JPEG image on that
page might have a MIME type of image/x-jpeg, so the browser knows to assemble it
into an image and display it.

In this case, MIME is used for something closer to its original purpose: pulling together
disparate resources into a single message. For example:

Content-type: multipart/related; boundary="boundaryValue";
type="text/xml"; start="<ebxmlheader@example.com>"

--boundaryValue
Content-ID: <ebxmlheader@example.com>
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">
<SOAP:Header xmlns:eb=

"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"
xsi:schemaLocation=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">
<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>
<eb:PartyId>urn:duns:987654321</eb:PartyId>

</eb:From>
<eb:To>

<eb:PartyId>urn:duns:123456789</eb:PartyId>
</eb:To>
<eb:CPAId>http://www.example.com/cpas/clipCPA</eb:CPAId>
<eb:ConversationId
>http://www.example.com/cpas/clipCPA@25430</eb:ConversationId>
<eb:Service>urn:services:ClipProcessing</eb:Service>
<eb:Action>OrderClips</eb:Action>
<eb:MessageData>

<eb:MessageId>
http://www.example.com/cpas/clipCPA@25430@648124</eb:MessageId>

<eb:Timestamp>2001-05-16T12:01:00</eb:Timestamp>
</eb:MessageData>
<eb:DuplicateElimination/>

</eb:MessageHeader>
</SOAP:Header>

<SOAP:Body xmlns:eb=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation=
"http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">
<eb:Manifest eb:version="2.0">

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 34 Introduction to ebXML

<eb:Reference xlink:href="cid:payload1" link:role="XLinkRole"
xlink:type="simple">
<eb:Description xml:lang="en-US">Clip List</eb:Description>

</eb:Reference>
</eb:Manifest>

</SOAP:Body>
</SOAP:Envelope>

--boundaryValue
Content-ID: <payload1>
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<purchase_order>
<po_number>1</po_number>
<part_number>123</part_number>
<price currency="USD">500.00</price>
</purchase_order>
--boundaryValue--

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 31 of 34

Section 8. Summary and Resources

Wrap up

ebXML is a group of related specifications that cover:

• Analysis of Business Processes and Business Documents

• Documentation of a company's capabilities in such a way that automated agreement
is possible

• Document transfer between Trading Partners to achieve specific business goals.

Businesses document their Business Processes and Business Document structures
using the BPSS. They document their capabilities using a CPP, and their agreements
with Trading Partners using a CPA. Any or all of this information may be stored in an
ebXML Registry, where it is searchable.

Messages are sent from one application, known as the Business Service Interface, to
another using ebMS. Specifically, the MSH sends messages using the SOAP with
Attachments specification so that information about the message is contained in a
SOAP message, and the documents themselves are contained in various payload
attachments.

Resources

ebXML covers a great variety of interrelated technologies. Now that you've got an idea
of how they all fit together, here are some places you can go for more information.

developerWorks Tutorials

developerWorks provides a number of tutorials that cover the background necessary
for building ebXML applications, including:

• Learn the basics of what XML is and how to use it with Introduction to XML
(http://www6.software.ibm.com/reg/devworks/dw-xmlintro-i).

• Get the background on XML messaging with Introduction to XML messaging
(http://www6.software.ibm.com/reg/devworks/dw-coxmsg-i), then learn where SOAP
fits in with XML messaging with SOAP
(http://www6.software.ibm.com/reg/devworks/dw-cosoap-i). Java technology
developers should read Introducing the Java Message Service
(http://www6.software.ibm.com/reg/devworks/dw-jms-i).

• Learn to add security to your applications with Digital signatures for SOAP messages
(http://www6.software.ibm.com/reg/devworks/dw-wsdsst-i).

• Gain an understanding of Web services in general with Creating a complete Web
service (http://www6.software.ibm.com/reg/devworks/dw-wsaggr-i) and Implementing
Web services with the WSTK 3.0.1

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 34 Introduction to ebXML

http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/8C8A8628B3DD7EDB852567BD000A8A64?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/601681DFBDBD06E2862569F1004DB6B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/601681DFBDBD06E2862569F1004DB6B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/601681DFBDBD06E2862569F1004DB6B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/601681DFBDBD06E2862569F1004DB6B9?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/52CEEC8554DB0C1586256A0D005A6E41?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/52CEEC8554DB0C1586256A0D005A6E41?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/52CEEC8554DB0C1586256A0D005A6E41?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/52CEEC8554DB0C1586256A0D005A6E41?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5BAFD181FF96253D86256AB5005B4620?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5BAFD181FF96253D86256AB5005B4620?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5BAFD181FF96253D86256AB5005B4620?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5BAFD181FF96253D86256AB5005B4620?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/5BAFD181FF96253D86256AB5005B4620?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/E58F02C1C8B556D486256A6C0050A75C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/E58F02C1C8B556D486256A6C0050A75C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/E58F02C1C8B556D486256A6C0050A75C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/E58F02C1C8B556D486256A6C0050A75C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/E58F02C1C8B556D486256A6C0050A75C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/D03C36F58E82ED4D86256A0F0068B5C6?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/D03C36F58E82ED4D86256A0F0068B5C6?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/D03C36F58E82ED4D86256A0F0068B5C6?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/D03C36F58E82ED4D86256A0F0068B5C6?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/D03C36F58E82ED4D86256A0F0068B5C6?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/A246BDE9836CC17B86256B450050646D?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/A246BDE9836CC17B86256B450050646D?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/A246BDE9836CC17B86256B450050646D?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/A246BDE9836CC17B86256B450050646D?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/A246BDE9836CC17B86256B450050646D?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/A246BDE9836CC17B86256B450050646D?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/A246BDE9836CC17B86256B450050646D?OpenDocument

(http://www6.software.ibm.com/reg/devworks/dw-wstk30-i).

Other IBM resources

• Get a quick overview of ebXML and more resources with David Mertz's article
"Understanding ebXML: Untangling the business Web of the future"
(http://www-106.ibm.com/developerworks/library/x-ebxml/index.html)
(developerWorks, June 2001).

• Read IBM's original proposal for Trading Partner Agreements
(http://ebxml.org/project_teams/trade_partner/tpaml106.zip), and read about IBM's
plans for integrating business-to-business communications
(http://www.ibm.com/developer/xml/tpaml/b2b-integration-with-tpa.pdf).

• Take a look at IBM WebSphere Studio Application Developer
(www-4.ibm.com/software/ad/studioappdev/), an easy-to-use, integrated
development environment for building, testing, and deploying J2EE applications,
including generating XML documents from DTDs and schemas.

• Find out how you can become an IBM Certified Developer in XML and related
technologies (http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml).

ebXML and related resources

• Read the ebXML specifications and technical reports at
http://www.ebxml.org/specs/index.htm. These extensive documents provide details
into the BPSS, Core Components, the Registry Information Model, the ebMS, and
every other specification that OASIS and UN/CEFACT produce. Specifications
provide normative details, and technical reports provide detailed discussions on how
to use them.

• Learn about the UMM at http://www.gefeg.com/tmwg/n090r10.htm.

• Learn about the UML at http://www.omg.org/uml/.

• Read the W3C's recommendation for Resource Description Framework at
http://www.w3.org/RDF/.

• Read about the W3C's work on standardizing Web services at
http://www.w3.org/2002/ws/.

• Read about the W3C XML Signature Working Group's work on security at
http://www.w3.org/Signature/.

Feedback

Please send us your feedback on this tutorial. We look forward to hearing from you!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to ebXML Page 33 of 34

http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/library/x-ebxml/index.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://ebxml.org/project_teams/trade_partner/tpaml106.zip&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://ebxml.org/project_teams/trade_partner/tpaml106.zip&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://ebxml.org/project_teams/trade_partner/tpaml106.zip&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/developer/xml/tpaml/b2b-integration-with-tpa.pdf&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/ad/studioappdev/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/ad/studioappdev/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/ad/studioappdev/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/ad/studioappdev/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-4.ibm.com/software/ad/studioappdev/&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml&origin=x
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml&origin=x
http://www.ebxml.org/specs/index.htm
http://www.gefeg.com/tmwg/n090r10.htm
http://www.omg.org/uml/
http://www.w3.org/RDF/
http://www.w3.org/2002/ws/
http://www.w3.org/Signature/

extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 34 Introduction to ebXML

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Should I take this tutorial?
	What is this tutorial about?
	Tools
	About the author

	What is ebXML?
	Why businesses talk to each other
	Using XML to communicate
	ebXML to the rescue
	Finding Trading Partners
	Reaching agreement
	Advanced ebXML features

	Architecture
	System overview
	Business Processes and Business Documents
	The Business Process Specification Schema
	The Registry Information Model
	Message structure

	Designing the system: Business Processes
	Analyzing your business
	Business Processes
	Business Collaborations
	Business Transactions
	Business Transactions and control
	Choreography and states
	Business Documents
	Reusable components
	A sample Business Process Specification

	CPPs and CPAs
	Collaboration Protocol Profiles (CPPs)
	Overall structure of a CPP
	PartyInfo
	Packaging
	A sample CPP
	Collaboration Protocol Agreements (CPAs)
	Overall structure of a CPA
	A sample CPA

	Using the registry
	ebXML Registries
	Browsing the registry
	Registry associations

	The ebXML Message Service
	The ebXML Message Service
	The SOAP message
	The SOAP header
	The SOAP body
	Pulling it together

	Summary and Resources
	Wrap up
	Resources
	Feedback

